
Oracle9i: Develop PL/SQL
Program Units

Student Guide • Volume 2

40056GC10
Production 1.0
July 2001
D33491

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure
and is also protected by copyright law. Reverse engineering of the software is
prohibited. If this documentation is delivered to a U.S. Government Agency of the
Department of Defense, then it is delivered with Restricted Rights and the following
legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered
trademarks of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Author

Nagavalli Pataballa

Technical Contributors
and Reviewers

Anna Atkinson
Bryan Roberts
Caroline Pereda
Cesljas Zarco
Coley William
Daniel Gabel
Dr. Christoph Burandt
Hakan Lindfors
Helen Robertson
John Hoff
Lachlan Williams
Laszlo Czinkoczki
Laura Pezzini
Linda Boldt
Marco Verbeek
Natarajan Senthil
Priya Vennapusa
Roger Abuzalaf
Ruediger Steffan
Sarah Jones
Stefan Lindblad
Susan Dee

Publisher

Sheryl Domingue

Preface

Curriculum Map

1 Overview of PL/SQL Subprograms
Course Objectives 1-2
Lesson Objectives 1-3
Oracle Internet Platform 1-4
PL/SQL Program Constructs 1-5
Overview of Subprograms 1-6
Block Structure for Anonymous PL/SQL Blocks 1-7
Block Structure for PL/SQL Subprograms 1-8
PL/SQL Subprograms 1-9
Benefits of Subprograms 1-10
Developing Subprograms by Using iSQL*Plus 1-11
Invoking Stored Procedures and Functions 1-12
Summary 1-13

2 Creating Procedures
Objectives 2-2
What Is a Procedure? 2-3
Syntax for Creating Procedures 2-4
Developing Procedures 2-5
Formal Versus Actual Parameters 2-6
Procedural Parameter Modes 2-7
Creating Procedures with Parameters 2-8
IN Parameters: Example 2-9
OUT Parameters: Example 2-10
Viewing OUT Parameters 2-12
IN OUT Parameters 2-13
Viewing IN OUT Parameters 2-14
Methods for Passing Parameters 2-15
DEFAULT Option for Parameters 2-16
Examples of Passing Parameters 2-17
Declaring Subprograms 2-18
Invoking a Procedure from an Anonymous PL/SQL Block 2-19
Invoking a Procedure from Another Procedure 2-20
Handled Exceptions 2-21
Unhandled Exceptions 2-23
Removing Procedures 2-25
Benefits of Subprograms 2-26
Summary 2-27
Practice 2 Overview 2-29

Contents

iii

3 Creating Functions
Objectives 3-2
Overview of Stored Functions 3-3
Syntax for Creating Functions 3-4
Creating a Function 3-5
Creating a Stored Function by Using iSQL*Plus 3-6
Creating a Stored Function by Using iSQL*Plus: Example 3-7
Executing Functions 3-8
Executing Functions: Example 3-9
Advantages of User-Defined Functions in SQL Expressions 3-10
Invoking Functions in SQL Expressions: Example 3-11
Locations to Call User-Defined Functions 3-12
Restrictions on Calling Functions from SQL Expressions 3-13
Restrictions on Calling from SQL 3-15
Removing Functions 3-16
Procedure or Function? 3-17
Comparing Procedures and Functions 3-18
Benefits of Stored Procedures and Functions 3-19
Summary 3-20
Practice 3 Overview 3-21

4 Managing Subprograms
Objectives 4-2
Required Privileges 4-3
Granting Access to Data 4-4
Using Invoker’s-Rights 4-5
Managing Stored PL/SQL Objects 4-6
USER_OBJECTS 4-7
List All Procedures and Functions 4-8
USER_SOURCE Data Dictionary View 4-9
List the Code of Procedures and Functions 4-10
USER_ERRORS 4-11
Detecting Compilation Errors: Example 4-12
List Compilation Errors by Using USER_ERRORS 4-13
List Compilation Errors by Using SHOW ERRORS 4-14
DESCRIBE in iSQL*Plus 4-15
Debugging PL/SQL Program Units 4-16
Summary 4-17
Practice 4 Overview 4-19

iv

5 Creating Packages
Objectives 5-2
Overview of Packages 5-3
Components of a Package 5-4
Referencing Package Objects 5-5
Developing a Package 5-6
Creating the Package Specification 5-8
Declaring Public Constructs 5-9
Creating a Package Specification: Example 5-10
Creating the Package Body 5-11
Public and Private Constructs 5-12
Creating a Package Body: Example 5-13
Invoking Package Constructs 5-15
Declaring a Bodiless Package 5-17
Referencing a Public Variable from a Stand-Alone Procedure 5-18
Removing Packages 5-19
Guidelines for Developing Packages 5-20
Advantages of Packages 5-21
Summary 5-23
Practice 5 Overview 5-26

6 More Package Concepts
Objectives 6-2
Overloading 6-3
Overloading: Example 6-4
Using Forward Declarations 6-7
Creating a One-Time-Only Procedure 6-9
Restrictions on Package Functions Used in SQL 6-10
User Defined Package: taxes_pack 6-11
Invoking a User-Defined Package Function from a SQL Statement 6-12
Persistent State of Package Variables: Example 6-13
Persistent State of Package Variables 6-15
Controlling the Persistent State of a Package Cursor 6-15
Executing PACK_CUR 6-17
PL/SQL Tables and Records in Packages 6-18
Summary 6-19
Practice 6 Overview 6-20

v

7 Oracle Supplied Packages
Objectives 7-2
Using Supplied Packages 7-3
Using Native Dynamic SQL 7-4
Execution Flow 7-5
Using the DBMS_SQL Package 7-6
Using DBMS_SQL 7-8
Using the EXECUTE IMMEDIATE Statement 7-9
Dynamic SQL Using EXECUTE IMMEDIATE 7-11
Using the DBMS_DDL Package 7-12
Using DBMS_JOB for Scheduling 7-13
DBMS_JOB Subprograms 7-14
Submitting Jobs 7-15
Changing Job Characteristics 7-17
Running, Removing, and Breaking Jobs 7-18
Viewing Information on Submitted Jobs 7-19
Using the DBMS_OUTPUT Package 7-20
Interacting with Operating System Files 7-21
What Is the UTL_FILE Package? 7-22
File Processing Using the UTL_FILE Package 7-23
UTL_FILE Procedures and Functions 7-24
Exceptions Specific to the UTL_FILE Package 7-25
The FOPEN and IS_OPEN Functions 7-26
Using UTL_FILE 7-27
The UTL_HTTP Package 7-29
Using the UTL_HTTP Package 7-30
Using the UTL_TCP Package 7-31
Oracle-Supplied Packages 7-32
Summary 7-37
Practice 7 Overview 7-38

8 Manipulating Large Objects
Objectives 8-2
What Is a LOB? 8-3
Contrasting LONG and LOB Data Types 8-4
Anatomy of a LOB 8-5
Internal LOBs 8-6
Managing Internal LOBs 8-7
What Are BFILEs? 8-8
Securing BFILEs 8-9
A New Database Object: DIRECTORY 8-10
Guidelines for Creating DIRECTORY Objects 8-11

vi

Managing BFILEs 8-12
Preparing to Use BFILEs 8-13
The BFILENAME Function 8-14
Loading BFILEs 8-15
Migrating from LONG to LOB 8-17
The DBMS_LOB Package 8-19
DBMS_LOB.READ and DBMS_LOB.WRITE 8-22
Adding LOB Columns to a Table 8-23
Populating LOB Columns 8-24
Updating LOB by Using SQL 8-26
Updating LOB by Using DBMS_LOB in PL/SQL 8-27
Selecting CLOB Values by Using SQL 8-28
Selecting CLOB Values by Using DBMS_LOB 8-29
Selecting CLOB Values in PL/SQL 8-30
Removing LOBs 8-31
Temporary LOBs 8-32
Creating a Temporary LOB 8-33
Summary 8-34
Practice 8 Overview 8-35

9 Creating Database Triggers
Objectives 9-2
Types of Triggers 9-3
Guidelines for Designing Triggers 9-4
Database Trigger: Example 9-5
Creating DML Triggers 9-6
DML Trigger Components 9-7
Firing Sequence 9-11
Syntax for Creating DML Statement Triggers 9-13
Creating DML Statement Triggers 9-14
Testing SECURE_EMP 9-15
Using Conditional Predicates 9-16
Creating a DML Row Trigger 9-17
Creating DML Row Triggers 9-18
Using OLD and NEW Qualifiers 9-19
Using OLD and NEW Qualifiers: Example Using Audit_Emp_Table 9-20
Restricting a Row Trigger 9-21
INSTEAD OF Triggers 9-22
Creating an INSTEAD OF Trigger 9-23
Creating an INSTEAD OF Trigger 9-26
Differentiating Between Database Triggers and Stored Procedures 9-27
Differentiating Between Database Triggers and Form Builder Triggers 9-28
Managing Triggers 9-29
DROP TRIGGER Syntax 9-30

vii

Trigger Test Cases 9-31
Trigger Execution Model and Constraint Checking 9-32
Trigger Execution Model and Constraint Checking: Example 9-33
A Sample Demonstration for Triggers Using Package Constructs 9-34
After Row and After Statement Triggers 9-35
Demonstration: VAR_PACK Package Specification 9-36
Demonstration: Using the AUDIT_EMP Procedure 9-38
Summary 9-39
Practice 9 Overview 9-40

10 More Trigger Concepts
Objectives 10-2
Creating Database Triggers 10-3
Creating Triggers on DDL Statements 10-4
Creating Triggers on System Events 10-5
LOGON and LOGOFF Trigger Example 10-6
CALL Statements 10-7
Reading Data from a Mutating Table 10-8
Mutating Table: Example 10-9
Implementing Triggers 10-11
Controlling Security Within the Server 10-12
Controlling Security with a Database Trigger 10-13
Using the Server Facility to Audit Data Operations 10-14
Auditing by Using a Trigger 10-15
Enforcing Data Integrity Within the Server 10-16
Protecting Data Integrity with a Trigger 10-17
Enforcing Referential Integrity Within the Server 10-18
Protecting Referential Integrity with a Trigger 10-19
Replicating a Table Within the Server 10-20
Replicating a Table with a Trigger 10-21
Computing Derived Data within the Server 10-22
Computing Derived Values with a Trigger 10-23
Logging Events with a Trigger 10-24
Benefits of Database Triggers 10-26
Managing Triggers 10-27
Viewing Trigger Information 10-28
Using USER_TRIGGERS 10-29
Listing the Code of Triggers 10-30
Summary 10-31
Practice 10 Overview 10-32

viii

11 Managing Dependencies
Objectives 11-2
Understanding Dependencies 11-3
Dependencies 11-4
Local Dependencies 11-5
A Scenario of Local Dependencies 11-6
Displaying Direct Dependencies by Using USER_DEPENDENCIES 11-7
Displaying Direct and Indirect Dependencies 11-8
Displaying Dependencies 11-9
Another Scenario of Local Dependencies 11-10
A Scenario of Local Naming Dependencies 11-11
Understanding Remote Dependencies 11-12
Concepts of Remote Dependencies 11-13
REMOTE_DEPENDENCIES_MODE Parameter 11-14
Remote Dependencies and Time Stamp Mode 11-15
Remote Procedure B Compiles at 8:00 a.m. 11-16
Local Procedure A Compiles at 9:00 a.m. 11-17
Execute Procedure A 11-18
Remote Procedure B Recompiled at 11:00 a.m. 11-19
Execute Procedure A 11-20
Signature Mode 11-21
Recompiling a PL/SQL Program Unit 11-22
Unsuccessful Recompilation 11-23
Successful Recompilation 11-24
Recompilation of Procedures 11-25
Packages and Dependencies 11-26
Summary 11-28
Practice 11 Overview 11-29

A PL/SQL Fundamentals Quiz

B PL/SQL Fundamentals Quiz Answers

C Practice Solutions

D Table Descriptions and Data

E Review of PL/SQL

F Creating Program Units by Using Procedure Builder

Index

Additional Practices

Additional Practice Solutions

Additional Practices: Table Descriptions and Data

ix

x

Additional
Practices

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 2

Additional Practices Overview
These additional practices are provided as a supplement to the course Develop PL/SQL Program Units.
In these practices, you apply the concepts that you learned in Develop PL/SQL Program Units.
The additional practices comprise of two parts:
Part A provides supplemental practice to create stored procedures, functions, packages, and triggers,
and to use the Oracle-supplied packages with iSQL*Plus as the development environment. The tables
used in this portion of the additional practices include EMPLOYEES, JOBS, JOB_HISTORY, and
DEPARTMENTS.

Part B is a case study which can be completed at the end of the course. This part supplements the
practices for creating and managing program units. The tables used in the case study are based on a
video database and contain the TITLE, TITLE_COPY, RENTAL, RESERVATION, and MEMBER
tables.
An entity relationship diagram is provided at the start of part A and part B. Each entity relationship
diagram displays the table entities and their relationships. More detailed definitions of the tables and
the data contained in each of the tables is provided in the appendix Additional Practices: Table
Descriptions and Data.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 3

Part A: Entity Relationship Diagram

Human Resources

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 4

Part A
Note: These exercises can be used for extra practice when discussing how to create procedures.

1. In this practice, create a program to add a new job into the JOBS table.
a. Create a stored procedure called ADD_JOBS to enter a new order into the JOBS table.

The procedure should accept three parameters. The first and second parameters supplies a job ID
and a job title. The third parameter supplies the minimum salary. Use the maximum salary for the
new job as twice the minimum salary supplied for the job ID.

b. Disable the trigger SECURE_DML before invoking the procedure. Invoke the procedure to add a
new job with job ID SY_ANAL, job title System Analyst, and minimum salary of 6,000.

c. Verify that a row was added and remember the new job ID for use in the next exercise.
Commit the changes.

2. In this practice, create a program to add a new row to the JOB_HISTORY table for an existing
employee.

Note: Disable all triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables before invoking
the procedure in part b. Enable all these triggers after executing the procedure.

a. Create a stored procedure called ADD_JOB_HIST to enter a new row into the JOB_HISTORY
table for an employee who is changing his job to the new job ID that you created in question 1b.
Use the employee ID of the employee who is changing the job and the new job ID for the
employee as parameters. Obtain the row corresponding to this employee ID from the
EMPLOYEES table and insert it into the JOB_HISTORY table. Make hire date of this employee
as the start date and today's date as end date for this row in the JOB_HISTORY table.
Change the hire date of this employee in the EMPLOYEES table to today's date. Update the job
ID of this employee to the job ID passed as parameter (Use the job ID of the job created in
question 1b) and salary equal to minimum salary for that job ID + 500.
Include exception handling to handle an attempt to insert a nonexistent employee.

b. Disable triggers (Refer to the note at the beginning of this question.)
Execute the procedure with employee ID 106 and job ID SY_ANAL as parameters.

Enable the triggers that you disabled.
c. Query the tables to view your changes, and then commit the changes.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 5

Part A
3. In this practice, create a program to update the minimum and maximum salaries for a job in the JOBS

table.
a. Create a stored procedure called UPD_SAL to update the minimum and maximum salaries for a

specific job ID in the JOBS table.

Pass three parameters to the procedure: the job ID, a new minimum salary, and a new maximum salary
for the job. Add exception handling to account for an invalid job ID in the JOBS table. Also, raise an
exception if the maximum salary supplied is less than the minimum salary. Provide an appropriate
message that will be displayed if the row in the JOBS table is locked and cannot be changed.

b. Execute the procedure. You can use the following data to test your procedure:
EXECUTE upd_sal ('SY_ANAL',7000,140)
EXECUTE upd_sal ('SY_ANAL',7000,14000)

c. Query the JOBS table to view your changes, and then commit the changes.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 6

Part A
4. In this practice, create a procedure to monitor whether employees have exceeded their

average salary limits.
a. Add a column to the EMPLOYEES table by executing the following command:

(labaddA_4.sql)
ALTER TABLE employees
ADD (sal_limit_indicate VARCHAR2(3) DEFAULT 'NO'

CONSTRAINT emp_sallimit_ck CHECK
(sal_limit_indicate IN ('YES', 'NO')));

b. Write a stored procedure called CHECK_AVG_SAL. This checks each employee's average
salary limit from the JOBS table against the salary that this employee has in the EMPLOYEES
table and updates the SAL_LIMIT_INDICATE column in the EMPLOYEES table when this
employee has exceeded his or her average salary limit.
Create a cursor to hold employee IDs, salaries, and their average salary limit. Find the average
salary limit possible for an employee's job from the JOBS table. Compare the average salary
limit possible for each employee to exact salaries and if the salary is more than the average salary
limit, set the employee’s SAL_LIMIT_INDICATE column to YES; otherwise, set it to NO.
Add exception handling to account for a record being locked.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 7

Part A
c. Execute the procedure, and then test the results.

Query the EMPLOYEES table to view your modifications, and then commit the changes.

Note: These exercises can be used for extra practice when discussing how to create functions.
5. Create a program to retrieve the number of years of service for a specific employee.

a. Create a stored function called GET_SERVICE_YRS to retrieve the total number of years
of service for a specific employee.
The function should accept the employee ID as a parameter and return the number of years
of service. Add error handling to account for an invalid employee ID.

b. Invoke the function. You can use the following data:
EXECUTE DBMS_OUTPUT.PUT_LINE(get_service_yrs(999))
Hint: The above statement should produce an error message because there is no employee
with employee ID 999.
EXECUTE DBMS_OUTPUT.PUT_LINE ('Approximately ' ||

get_service_yrs(106) || ' years')
Hint: The above statement should be successful and return the number of years of service
for employee with employee ID 106.

c. Query the JOB_HISTORY and EMPLOYEES tables for the specified employee to verify
that the modifications are accurate.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 8

Part A
6. In this practice, create a program to retrieve the number of different jobs that an employee worked

during his or her service.
a. Create a stored function called GET_JOB_COUNT to retrieve the total number of different

jobs on which an employee worked.
The function should accept one parameter to hold the employee ID. The function will return
the number of different jobs that employee worked until now. This also includes the present
job. Add exception handling to account for an invalid employee ID.
Hint: Verify distinct job IDs from the JOB_HISTORY table. Verify whether the current
job ID is one of the job IDs on which the employee worked.

b. Invoke the function. You can use the following data:
EXECUTE DBMS_OUTPUT.PUT_LINE('Employee worked on ' ||

get_job_count(176) || ' different jobs.')

Note: These exercises can be used for extra practice when discussing how to create packages.

7. Create a package specification and body called EMP_JOB_PKG that contains your ADD_JOBS,
ADD_JOB_HIST, and UPD_SAL procedures, as well as your GET_SERVICE_YRS function.

a. Make all the constructs public. Consider whether you still need the stand-alone procedures
and functions that you just packaged.

b. Disable all the triggers before invoking the procedure and enable them after invoking the
procedure, as suggested in question 2b.
Invoke your ADD_JOBS procedure to create a new job with ID PR_MAN, job title Public
Relations Manager, and salary of 6,250.
Invoke your ADD_JOB_HIST procedure to modify the job of employee with employee ID
110 to job ID PR_MAN.

Hint: All of the above calls to the functions should be successful.
c. Query the JOBS, JOB_HISTORY, and EMPLOYEES tables to verify the results.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 9

Part A
Note: These exercises can be used for extra practice when discussing how to use Oracle-supplied
packages.
8. In this practice, use an Oracle-supplied package to schedule your GET_JOB_COUNT

function to run semiannually.
a. Create an anonymous block to call the DBMS_JOB Oracle-supplied package.

Invoke the package function DBMS_JOB.SUBMIT and pass the following four parameters: a
variable to hold the job number, the name of the subprogram you want to submit, SYSDATE as
the date when the job will run, and an interval of ADDMONTHS(SYSDATE , 6) for
semiannual submission.
Note: To force the job to run immediately, call DBMS_JOB.RUN(your_job_number) after
calling DBMS_JOB.SUBMIT. This executes the job waiting in the queue.

Execute the anonymous block.
b. Check your results by querying the EMPLOYEES and JOB_HISTORY tables and querying the

USER_JOBS dictionary view to see the status of your job submission.

Your output should appear similar to the following output:

Note: These exercises can be used for extra practice when discussing how to create database
triggers.
9. In this practice, create a trigger to ensure that the job ID of any new employee being hired to

department 80 (the Sales department) is a sales manager or representative.
a. Disable all the previously created triggers as discussed in question 2b.
b. Create a trigger called CHK_SALES_JOB.

Fire the trigger before every row that is changed after insertions and updates to the JOB_ID
column in the EMPLOYEES table. Check that the new employee has a job ID of SA_MAN or
SA_REP in the EMPLOYEES table. Add exception handling and provide an appropriate message
so that the update fails if the new job ID is not that of a sales manager or representative.

c. Test the trigger. You can use the following data:
UPDATE employees
SET job_id = 'AD_VP'
WHERE employee_id = 106;

UPDATE employees
SET job_id = 'AD_VP'
WHERE employee_id = 179;

UPDATE employees
SET job_id = 'SA_MAN'
WHERE employee_id = 179;

Hint: The middle statement should produce the error message specified in your trigger.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 10

Part A
d. Query the EMPLOYEES table to view the changes. Commit the changes.

e. Enable all the triggers that you previously disabled, as discussed in question 2b.

10. In this practice, create a trigger to ensure that the minimum and maximum salaries of a job are
never modified such that the salary of an existing employee with that job ID is out of
the new range specified for the job.

a. Create a trigger called CHECK_SAL_RANGE.
Fire the trigger before every row that is changed when data is updated in the MIN_SALARY and
MAX_SALARY columns in the JOBS table. For any minimum or maximum salary value that is
changed, check that the salary of any existing employee with that job ID in the EMPLOYEES
table falls within the new range of salaries specified for this job ID. Include exception handling
to cover a salary range change that affects the record of any existing employee.

b. Test the trigger. You can use the following data:
SELECT * FROM jobs WHERE job_id = 'SY_ANAL';

SELECT employee_id, job_id, salary
FROM employees
WHERE job_id = 'SY_ANAL';

UPDATE jobs
SET min_salary = 5000, max_salary = 7000
WHERE job_id = 'SY_ANAL';

UPDATE jobs
SET min_salary = 7000, max_salary = 18000
WHERE job_id = 'SY_ANAL';

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 11

Part B: Entity Relationship Diagram

TITLE
#* ID

* title
* description

o rating
o category
o release date

TITLE_COPY
#* ID

* status

RENTAL
#* book date
o act ret date
o exp ret date

MEMBER
#* ID

* last name
o first name
o address
o city
o phone
* join date

RESERVATION
#* reservation date

for

the subject
of

available as

a copy

the subject of

made against

responsible
for

created
for

responsible
for

set up for

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 12

Part B
In this exercise, create a package named VIDEO that contains procedures and functions for a video
store application. This application allows customers to become a member of the video store. Any
members can rent movies, return rented movies, and reserve movies. Additionally, create a trigger to
ensure that any data in the video tables is modified only during business hours.
Create the package using iSQL*Plus and use the DBMS_OUTPUT Oracle supplied package to display
messages.
The video store database contains the following tables: TITLE, TITLE_COPY, RENTAL,
RESERVATION, and MEMBER. The entity relationship diagram is shown on the previous page.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 13

Part B
1. Run the script buildvid1.sql to create all of the required tables and sequences needed for

this exercise.
Run the script buildvid2.sql to populate all the tables created through by the script
buildvid1.sql

2. Create a package named VIDEO with the following procedures and functions:
a. NEW_MEMBER: A public procedure that adds a new member to the MEMBER table. For

the member ID number, use the sequence MEMBER_ID_SEQ; for the join date, use
SYSDATE. Pass all other values to be inserted into a new row as parameters.

b. NEW_RENTAL: An overloaded public function to record a new rental. Pass the title ID
number for the video that a customer wants to rent and either the customer’s last name or
his member ID number into the function. The function should return the due date for the
video. Due dates are three days from the date the video is rented. If the status for a
movie requested is listed as AVAILABLE in the TITLE_COPY table for one copy of
this title, then update this TITLE_COPY table and set the status to RENTED. If there is
no copy available, the function must return NULL. Then, insert a new record into the
RENTAL table identifying the booked date as today's date, the copy ID number, the
member ID number, the title ID number and the expected return date. Be aware of
multiple customers with the same last name. In this case, have the function return NULL,
and display a list of the customers' names that match and their ID numbers.

c. RETURN_MOVIE: A public procedure that updates the status of a video (available,
rented, or damaged) and sets the return date. Pass the title ID, the copy ID and the status
to this procedure. Check whether there are reservations for that title, and display a
message if it is reserved. Update the RENTAL table and set the actual return date to
today’s date. Update the status in the TITLE_COPY table based on the status parameter
passed into the procedure.

d. RESERVE_MOVIE: A private procedure that executes only if all of the video copies
requested in the NEW_RENTAL procedure have a status of RENTED. Pass the member
ID number and the title ID number to this procedure. Insert a new record into the
RESERVATION table and record the reservation date, member ID number, and title ID
number. Print out a message indicating that a movie is reserved and its expected date of
return.

e. EXCEPTION_HANDLER: A private procedure that is called from the exception handler
of the public programs. Pass to this procedure the SQLCODE number, and the name of
the program (as a text string) where the error occurred. Use
RAISE_APPLICATION_ERROR to raise a customized error. Start with a unique key
violation (-1) and foreign key violation
(-2292). Allow the exception handler to raise a generic error for any other errors.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 14

Part B
You can use the following data to test your routines:
EXECUTE video.new_member

('Haas', 'James', 'Chestnut Street', 'Boston', '617-123-4567')

EXECUTE video.new_member
('Biri', 'Allan', 'Hiawatha Drive', 'New York', '516-123-4567')

EXECUTE DBMS_OUTPUT.PUT_LINE(video.new_rental(110, 98))

EXECUTE DBMS_OUTPUT.PUT_LINE(video.new_rental(109, 93))

EXECUTE DBMS_OUTPUT.PUT_LINE(video.new_rental(107, 98))

EXECUTE DBMS_OUTPUT.PUT_LINE(video.new_rental('Biri', 97))

EXECUTE DBMS_OUTPUT.PUT_LINE(video.new_rental(97, 97))

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 15

Part B

EXECUTE video.return_movie(98, 1, 'AVAILABLE')

EXECUTE video.return_movie(95, 3, 'AVAILABLE')

EXECUTE video.return_movie(111, 1, 'RENTED')

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 16

Part B
3. The business hours for the video store are 8:00 a.m. to 10:00 p.m., Sunday through Friday, and

8:00 a.m. to 12:00 a.m. on Saturday. To ensure that the tables can only be modified
during these hours, create a stored procedure that is called by triggers on the tables.

a. Create a stored procedure called TIME_CHECK that checks the current time against business
hours. If the current time is not within business hours, use the RAISE_APPLICATION_ERROR
procedure to give an appropriate message.

b. Create a trigger on each of the five tables. Fire the trigger before data is inserted, updated, and
deleted from the tables. Call your TIME_CHECK procedure from each of these triggers.

c. Test your trigger.
Note: In order for your trigger to fail, you need to change the time to be outside the range of
your current time in class. For example, while testing, you may want valid video hours in your
trigger to be from 6:00 p.m. to 8:00 a.m.

Additional
Practice

Solutions

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 2

Part A: Additional Practice 1 Solutions
1. In this practice, create a program to add a new job into the JOBS table.

a. Create a stored procedure called ADD_JOBS to enter a new order into the JOBS table.

The procedure should accept three parameters. The first and second parameters supplies a job ID and
a job title. The third parameter supplies the minimum salary. Use the maximum salary for the new
job as twice the minimum salary supplied for the job ID.
CREATE OR REPLACE PROCEDURE add_jobs

(p_jobid IN jobs.job_id%TYPE,
p_jobtitle IN jobs.job_title%TYPE,
p_minsal IN jobs.min_salary%TYPE

)
IS

v_maxsal jobs.max_salary%TYPE;
BEGIN

v_maxsal := 2 * p_minsal;
INSERT INTO jobs

(job_id, job_title, min_salary, max_salary)
VALUES

(p_jobid, p_jobtitle, p_minsal, v_maxsal);
DBMS_OUTPUT.PUT_LINE ('Added the following row

into the JOBS table ...');
DBMS_OUTPUT.PUT_LINE (p_jobid || ' ' || p_jobtitle ||

' '|| p_minsal || ' ' || v_maxsal);
END add_jobs;
/

b. Disable the trigger SECURE_DML before invoking the procedure. Invoke the procedure to add a new
job with job ID SY_ANAL, job title System Analyst, and minimum salary of 6,000.
ALTER TRIGGER secure_employees DISABLE;
EXECUTE add_jobs ('SY_ANAL', 'System Analyst', 6000)

c. Verify that a row was added and remember the new job ID for use in the next exercise.
Commit the changes.
SELECT *
FROM jobs
WHERE job_id = 'SY_ANAL';

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 3

Part A: Additional Practice 2 Solutions
2. In this practice, create a program to add a new row to the JOB_HISTORY table, for an existing

employee.
Note: Disable all triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables before
invoking the procedure in part b. Enable all these triggers after executing the procedure.

a. Create a stored procedure called ADD_JOB_HIST to enter a new row into the JOB_HISTORY
table for an employee who is changing his job to the new job ID that you created in question 1b.
Use the employee ID of the employee who is changing the job and the new job ID for the employee
as parameters. Obtain the row corresponding to this employee ID from the EMPLOYEES table and
insert it into the JOB_HISTORY table. Make hire date of this employee as start date and today's
date as end date for this row in the JOB_HISTORY table.
Change the hire date of this employee in the EMPLOYEES table to today's date. Update the job ID of
this employee to the job ID passed as parameter (Use the job ID of the job created in question 1b)
and salary equal to minimum salary for that job ID + 500.

Include exception handling to handle an attempt to insert a nonexistent employee.
CREATE OR REPLACE PROCEDURE add_job_hist

(p_empid IN employees.employee_id%TYPE,
p_jobid IN jobs.job_id%TYPE)

IS
BEGIN

INSERT INTO job_history
SELECT employee_id, hire_date, SYSDATE, job_id, department_id
FROM employees
WHERE employee_id = p_empid;

UPDATE employees
SET hire_date = SYSDATE,

job_id = p_jobid,
salary = (SELECT min_salary+500

FROM jobs
WHERE job_id = p_jobid)

WHERE employee_id = p_empid;
DBMS_OUTPUT.PUT_LINE ('Added employee ' ||p_empid||

' details to the JOB_HISTORY table');
DBMS_OUTPUT.PUT_LINE ('Updated current job of employee '

||p_empid|| ' to '|| p_jobid);
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20001, 'Employee does not exist!');

END add_job_hist;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 4

Part A: Additional Practice 2 Solutions (continued)

b. Disable triggers. (See the note at the beginning of this question.)
Execute the procedure with employee ID 106 and job ID SY_ANAL as parameters.

Enable the triggers that you disabled.
ALTER TABLE employees DISABLE ALL TRIGGERS;
ALTER TABLE jobs DISABLE ALL TRIGGERS;
ALTER TABLE job_history DISABLE ALL TRIGGERS;

EXECUTE add_job_hist(106, 'SY_ANAL')

ALTER TABLE employees ENABLE ALL TRIGGERS;
ALTER TABLE jobs ENABLE ALL TRIGGERS;
ALTER TABLE job_history ENABLE ALL TRIGGERS;

c. Query the tables to view your changes, and then commit the changes.
SELECT * FROM job_history
WHERE employee_id = 106;

SELECT job_id, salary FROM employees
WHERE employee_id = 106;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 5

Part A: Additional Practice 3 Solutions
3. In this practice, create a program to update the minimum and maximum salaries for a job in the

JOBS table.
a. Create a stored procedure called UPD_SAL to update the minimum and maximum salaries for a

specific job ID in the JOBS table.
Pass three parameters to the procedure: the job ID, a new minimum salary, and a new maximum
salary for the job. Add exception handling to account for an invalid job ID in the JOBS table. Also,
raise an exception if the maximum salary supplied is less than the minimum salary. Provide an
appropriate message that will be displayed if the row in the JOBS table is locked and cannot be
changed.
CREATE OR REPLACE PROCEDURE upd_sal
(p_jobid IN jobs.job_id%type,
p_minsal IN jobs.min_salary%type,
p_maxsal IN jobs.max_salary%type)

IS
v_dummy VARCHAR2(1);
e_resource_busy EXCEPTION;
sal_error EXCEPTION;
PRAGMA EXCEPTION_INIT (e_resource_busy , -54);

BEGIN
IF (p_maxsal < p_minsal) THEN
DBMS_OUTPUT.PUT_LINE('ERROR. MAX SAL SHOULD BE > MIN SAL');
RAISE sal_error;

END IF;
SELECT ''

INTO v_dummy
FROM jobs
WHERE job_id = p_jobid
FOR UPDATE OF min_salary NOWAIT;

UPDATE jobs
SET min_salary = p_minsal,

max_salary = p_maxsal
WHERE job_id = p_jobid;

EXCEPTION
WHEN e_resource_busy THEN
RAISE_APPLICATION_ERROR (-20001, 'Job information is

currently locked, try later.');
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR
(-20001, 'This job ID does not exist');

WHEN sal_error THEN
RAISE_APPLICATION_ERROR(-20001,'Data error..Max salary should

be more than min salary');
END upd_sal;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 6

Part A: Additional Practice 3 and 4 Solutions
b. Execute the procedure. You can use the following data to test your procedure:

EXECUTE upd_sal ('SY_ANAL', 7000, 140)
EXECUTE upd_sal ('SY_ANAL', 7000, 14000)

c. Query the JOBS table to view your changes, and then commit the changes.
SELECT *
FROM jobs
WHERE job_id = 'SY_ANAL';

4. In this practice, create a procedure to monitor whether employees have exceeded their average
salary limits.

a. Add a column to the EMPLOYEES table by executing the following command: (labaddA_4.sql)
ALTER TABLE employees
ADD (sal_limit_indicate VARCHAR2(3) DEFAULT 'NO'

CONSTRAINT emp_sallimit_ck CHECK
(sal_limit_indicate IN ('YES', 'NO')));

b. Write a stored procedure called CHECK_AVG_SAL which checks each employee's average
salary limit from the JOBS table against the salary that this employee has in the EMPLOYEES
table and updates the SAL_LIMIT_INDICATE column in the EMPLOYEES table when this
employee has exceeded his or her average salary limit.
Create a cursor to hold employee Ids, salaries, and their average salary limit. Find the average
salary limit possible for an employee's job from the JOBS table. Compare the average salary
limit possible per employee to their salary and if the salary is more than the average salary
limit, set the employee’s SAL_LIMIT_INDICATE column to YES; otherwise, set it to NO. Add
exception handling to account for a record being locked.

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 7

Part A: Additional Practice 4 Solutions (continued)
CREATE OR REPLACE PROCEDURE check_avg_sal
IS

v_avg_sal NUMBER;
CURSOR emp_sal_cur IS

SELECT employee_id, job_id, salary
FROM employees
FOR UPDATE;

e_resource_busy EXCEPTION;
PRAGMA EXCEPTION_INIT(e_resource_busy, -54);

BEGIN
FOR r_emp IN emp_sal_cur LOOP

SELECT (max_salary + min_salary)/2
INTO v_avg_sal

FROM jobs
WHERE jobs.job_id = r_emp.job_id;
IF r_emp.salary >= v_avg_sal THEN

UPDATE employees
SET sal_limit_indicate = 'YES'
WHERE CURRENT OF emp_sal_cur;

ELSE
UPDATE employees

SET sal_limit_indicate = 'NO'
WHERE employee_id = r_emp.employee_id;

END IF;
END LOOP;

EXCEPTION
WHEN e_resource_busy THEN

ROLLBACK;
RAISE_APPLICATION_ERROR (-20001,

'Record is busy, try later.');
END check_avg_sal;
/

c. Execute the procedure, and then test the results.
EXECUTE check_avg_sal
Query the EMPLOYEES table to view your modifications, and then commit the changes.

SELECT e.job_id, j.min_salary, e.salary, j.max_salary
FROM employees e, jobs j
WHERE e.job_id = j.job_id
AND employee_id = 106;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 8

Part A: Additional Practice 5 Solutions
5. Create a program to retrieve the number of years of service for a specific employee.

a. Create a stored function called GET_SERVICE_YRS to retrieve the total number of years of service
for a specific employee.
The function should accept the employee ID as a parameter and return the number of years of
service. Add error handling to account for an invalid employee ID.
CREATE OR REPLACE FUNCTION get_service_yrs

(p_empid IN employees.employee_id%TYPE)
RETURN number

IS
CURSOR emp_yrs_cur IS

SELECT (end_date - start_date)/365 service
FROM job_history
WHERE employee_id = p_empid;
v_srvcyrs NUMBER(2) := 0;
v_yrs NUMBER(2) := 0;

BEGIN
FOR r_yrs IN emp_yrs_cur LOOP

EXIT WHEN emp_yrs_cur%NOTFOUND;
v_srvcyrs := v_srvcyrs + r_yrs.service;

END LOOP;
SELECT (SYSDATE - hire_date)
INTO v_yrs
FROM employees
WHERE employee_id = p_empid;

v_srvcyrs := v_srvcyrs + v_yrs;
RETURN v_srvcyrs;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR(-20348, 'There is no employee with
the specified ID');

END get_service_yrs;
/

b. Invoke the function. You can use the following data:
EXECUTE DBMS_OUTPUT.PUT_LINE(get_service_yrs(999))

EXECUTE DBMS_OUTPUT.PUT_LINE ('Approximately ' ||
get_service_yrs(106) || ' years')

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 9

Part A: Additional Practice 5 Solutions (continued)

c. Query the JOB_HISTORY and EMPLOYEES tables for the specified employee to verify that the
modifications are accurate.
SELECT employee_id, job_id, (end_date-start_date)/365 duration
FROM job_history;

SELECT job_id, (SYSDATE-hire_date)/365 duration
FROM employees
WHERE employee_id = 106;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 10

Part A: Additional Practice 6 Solutions
6. In this practice, create a program to retrieve the number of different jobs that an employee

worked during his or her service.
a. Create a stored function called GET_JOB_COUNT to retrieve the total number of different jobs on

which employee worked.
The function should accept one parameter to hold the employee ID. The function will return the
number of different jobs that employee worked until now. This also includes the present job. Add
exception handling to account for an invalid employee ID.
Hint: Verify distinct job IDs from the Job_history table. Verify whether the current job ID is
one of the job IDs on which the employee worked.

CREATE OR REPLACE FUNCTION get_job_count
(p_empid IN employees.employee_id%TYPE)

RETURN NUMBER
IS

v_currjob employees.job_id%TYPE;
v_numjobs NUMBER := 0;
n NUMBER;

BEGIN
SELECT COUNT(DISTINCT job_id)

INTO v_numjobs
FROM job_history
WHERE employee_id = p_empid;

SELECT COUNT(job_id)
INTO n
FROM employees
WHERE employee_id = p_empid
AND job_id IN (SELECT DISTINCT job_id

FROM job_history
WHERE employee_id = p_empid);

IF (n = 0) THEN -- The current job is not one of the previous
jobs

v_numjobs := v_numjobs + 1;
END IF;
RETURN v_numjobs;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR(-20348, 'This employee does not
exist!');

END get_job_count;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 11

Part A: Additional Practice 6 and 7 Solutions
b. Invoke the function. You can use the following data:

EXECUTE DBMS_OUTPUT.PUT_LINE('Employee worked on ' ||
get_job_count(176) || ' different jobs.')

7. Create a package specification and body called EMP_JOB_PKG that contains your ADD_JOBS,
ADD_JOB_HIST, and UPD_SAL procedures, as well as your GET_SERVICE_YRS function.

a. Make all the constructs public. Consider whether you still need the stand-alone procedures and
functions you just packaged.

CREATE OR REPLACE PACKAGE emp_job_pkg
IS

PROCEDURE add_jobs
(p_jobid IN jobs.job_id%TYPE,
p_jobtitle IN jobs.job_title%TYPE,
p_minsal IN jobs.min_salary%TYPE

);
PROCEDURE add_job_hist

(p_empid IN employees.employee_id%TYPE,
p_jobid IN jobs.job_id%TYPE);

PROCEDURE upd_sal
(p_jobid IN jobs.job_id%type,
p_minsal IN jobs.min_salary%type,
p_maxsal IN jobs.max_salary%type);

FUNCTION get_service_yrs
(p_empid IN employees.employee_id%TYPE)
RETURN NUMBER;

END emp_job_pkg;
/
CREATE OR REPLACE PACKAGE BODY emp_job_pkg
IS

PROCEDURE add_jobs
(p_jobid IN jobs.job_id%TYPE,
p_jobtitle IN jobs.job_title%TYPE,
p_minsal IN jobs.min_salary%TYPE

)
IS

v_maxsal jobs.max_salary%TYPE;
BEGIN

v_maxsal := 2 * p_minsal;
INSERT INTO jobs (job_id, job_title, min_salary, max_salary)
VALUES (p_jobid, p_jobtitle, p_minsal, v_maxsal);

DBMS_OUTPUT.PUT_LINE ('Added the following row into the JOBS
table ...');

DBMS_OUTPUT.PUT_LINE (p_jobid||' '||p_jobtitle||'
'||p_minsal||' '||v_maxsal);
END add_jobs;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 12

Part A: Additional Practice 7 Solutions (continued)
PROCEDURE add_job_hist

(p_empid IN employees.employee_id%TYPE,
p_jobid IN jobs.job_id%TYPE) IS

BEGIN
INSERT INTO job_history
SELECT employee_id, hire_date, SYSDATE, job_id, department_id
FROM employees WHERE employee_id = p_empid;

UPDATE employees
SET hire_date = SYSDATE, job_id = p_jobid,

salary = (SELECT min_salary+500 FROM jobs
WHERE job_id = p_jobid)

WHERE employee_id = p_empid;
DBMS_OUTPUT.PUT_LINE ('Added employee ' ||p_empid|| ' details

to the JOB_HISTORY table');
DBMS_OUTPUT.PUT_LINE('Updated current job of employee ' ||

p_empid || ' to ' || p_jobid);
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20001, 'Employee does not exist!');

END add_job_hist;
PROCEDURE upd_sal

(p_jobid IN jobs.job_id%type,
p_minsal IN jobs.min_salary%type,
p_maxsal IN jobs.max_salary%type) IS
v_dummy VARCHAR2(1);
e_resource_busy EXCEPTION;
sal_error EXCEPTION;
PRAGMA EXCEPTION_INIT (e_resource_busy , -54);

BEGIN
IF (p_maxsal < p_minsal) THEN

DBMS_OUTPUT.PUT_LINE('ERROR..MAX SAL SHOULD BE > MIN SAL');
RAISE sal_error;

END IF;
SELECT '' INTO v_dummy FROM jobs WHERE job_id = p_jobid

FOR UPDATE OF min_salary NOWAIT;
UPDATE jobs
SET min_salary = p_minsal, max_salary = p_maxsal
WHERE job_id = p_jobid;

EXCEPTION
WHEN e_resource_busy THEN
RAISE_APPLICATION_ERROR (-20001, 'Job information is currently

locked, try later.');
WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20001, 'This job ID doesn't exist');
WHEN sal_error THEN

RAISE_APPLICATION_ERROR(-20001,'Data error..Max salary
should be more than min salary');

END upd_sal;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 13

Part A: Additional Practice 7 Solutions (continued)
FUNCTION get_service_yrs

(p_empid IN employees.employee_id%TYPE)
RETURN number

IS
CURSOR emp_yrs_cur IS

SELECT (end_date - start_date)/365 service
FROM job_history
WHERE employee_id = p_empid;

v_srvcyrs NUMBER(2) := 0;
v_yrs NUMBER(2) := 0;

BEGIN
FOR r_yrs IN emp_yrs_cur LOOP

EXIT WHEN emp_yrs_cur%NOTFOUND;
v_srvcyrs := v_srvcyrs + r_yrs.service;

END LOOP;
SELECT (SYSDATE - hire_date)
INTO v_yrs
FROM employees
WHERE employee_id = p_empid;

v_srvcyrs := v_srvcyrs + v_yrs;
RETURN v_srvcyrs;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR(-20348, 'There is no employee with the
specified ID');
END get_service_yrs;

END emp_job_pkg;
/
b. Disable all the triggers before invoking the procedure and enable them after invoking the procedure,

as suggested in question 2b.
Invoke your ADD_JOBS procedure to create a new job with ID PR_MAN, job title Public
Relations Manager, and salary of 6,250.
Invoke your ADD_JOB_HIST procedure to modify the job of employee with employee ID 110 to
job ID PR_MAN.

Hint: All of the above calls to the functions should be successful.
EXECUTE emp_job_pkg.add_jobs ('PR_MAN', 'Public Relations

Manager', 6250)
EXECUTE emp_job_pkg.add_job_hist(110, 'PR_MAN')

c. Query the JOBS, JOB_HISTORY, and EMPLOYEES tables to verify the results.
SELECT * FROM jobs WHERE job_id = 'PR_MAN';
SELECT * FROM job_history WHERE employee_id = 110;
SELECT job_id, salary FROM employees WHERE employee_id = 110;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 14

Part A: Additional Practice 8 Solutions
8. In this practice, use an Oracle-supplied package to schedule your GET_JOB_COUNT

function to run semiannually.
a. Create an anonymous block to call the DBMS_JOB Oracle-supplied package.

Invoke the package function DBMS_JOB.SUBMIT and pass the following four parameters: a
variable to hold the job number, the name of the subprogram you want to submit, SYSDATE as the
date when the job will run, and an interval of ADDMONTHS(SYSDATE , 6) for semiannual
submission.

DECLARE
v_job USER_JOBS.job%TYPE;

BEGIN
DBMS_JOB.SUBMIT (v_job, 'BEGIN DBMS_OUTPUT.PUT_LINE

(get_job_count(110)); END; ',
SYSDATE,
'ADD_MONTHS(SYSDATE, 6)');

DBMS_JOB.RUN(v_job);
DBMS_OUTPUT.PUT_LINE('JOB: '|| v_job ||

' COMPLETED AT - ' || SYSDATE);
END;
/

Note: To force the job to run immediately, call DBMS_JOB.RUN(your_job_number) after calling
DBMS_JOB.SUBMIT. This executes the job waiting in the queue.

Execute the anonymous block.
b. Check your results by querying the EMPLOYEES and JOB_HISTORY tables and querying the

USER_JOBS dictionary view to see the status of your job submission.
SELECT job, what, schema_user, last_date, next_date, interval
FROM USER_JOBS;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 15

Part A: Additional Practice 9 Solutions
9. In this practice, create a trigger to ensure that the job ID of any new employee being hired to

department 80 (the Sales department) is a sales manager or representative.
a. Disable all the previously created triggers as discussed in question 2b.

ALTER TABLE employees DISABLE ALL TRIGGERS;
ALTER TABLE jobs DISABLE ALL TRIGGERS;
ALTER TABLE job_history DISABLE ALL TRIGGERS;

b. Create a trigger called CHK_SALES_JOB.
Fire the trigger before every row that is changed after insertions and updates to the JOB_ID column
in the EMPLOYEES table. Check that the new employee has a job ID of SA_MAN or SA_REP in the
EMPLOYEES table. Add exception handling and provide an appropriate message so that the update
fails if the new job ID is not that of a sales manager or representative.
CREATE OR REPLACE TRIGGER chk_sales_job
BEFORE INSERT OR UPDATE OF job_id ON employees
FOR EACH ROW
DECLARE

e_invalid_sales_job EXCEPTION;
BEGIN

IF :new.department_id = 80 THEN
IF (:new.job_id NOT IN ('SA_MAN' , 'SA_REP')) THEN

RAISE e_invalid_sales_job;
END IF;

END IF;
EXCEPTION

WHEN e_invalid_sales_job THEN
RAISE_APPLICATION_ERROR (-20444, 'This employee in department

80 should be a Sales Manager or Sales Rep!');
END chk_sales_job;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 16

Part A: Additional Practice 9 Solutions (continued)

c. Test the trigger. You can use the following data:
UPDATE employees
SET job_id = 'AD_VP'
WHERE employee_id = 106;

UPDATE employees
SET job_id = 'AD_VP'
WHERE employee_id = 179;

UPDATE employees
SET job_id = 'SA_MAN'
WHERE employee_id = 179;

Hint: The middle statement should produce the error message specified in your trigger.

d. Query the EMPLOYEES table to view the changes. Commit the changes.
SELECT job_id, department_id, salary
FROM employees
WHERE employee_id = 179;

e. Enable all the triggers previously that you disabled, as discussed in question 2b.
ALTER TABLE employees ENABLE ALL TRIGGERS;
ALTER TABLE jobs ENABLE ALL TRIGGERS;
ALTER TABLE job_history ENABLE ALL TRIGGERS;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 17

Part A: Additional Practice 10 Solutions
10. In this practice, create a trigger to ensure that the minimum and maximum salaries of a job are

never modified such that the salary of an existing employee with that job ID is out of the new
range specified for the job.

a. Create a trigger called CHECK_SAL_RANGE.
Fire the trigger before every row that is changed when data is updated in the MIN_SALARY and
MAX_SALARY columns in the JOBS table. For any minimum or maximum salary value that is
changed, check that the salary of any existing employee with that job ID in the EMPLOYEES table
falls within the new range of salaries specified for this job ID. Include exception handling to cover a
salary range change that affects the record of any existing employee.
CREATE OR REPLACE TRIGGER check_sal_range
BEFORE UPDATE OF min_salary, max_salary ON jobs
FOR EACH ROW
DECLARE

v_minsal employees.salary%TYPE;
v_maxsal employees.salary%TYPE;
e_invalid_salrange EXCEPTION;

BEGIN
SELECT MIN(salary), MAX(salary)

INTO v_minsal, v_maxsal
FROM employees
WHERE job_id = :NEW.job_id;

IF (v_minsal < :NEW.min_salary)OR(v_maxsal > :NEW.max_salary)
THEN RAISE e_invalid_salrange;

END IF;
EXCEPTION

WHEN e_invalid_salrange THEN
RAISE_APPLICATION_ERROR(-20550, 'There are employees whose

salary is out of the specified range. Can not update with
the specified salary range.');

END check_sal_range;
/

b. Test the trigger. You can use the following data:
SELECT * FROM jobs WHERE job_id = 'SY_ANAL';
SELECT employee_id, job_id, salary
FROM employees
WHERE job_id = 'SY_ANAL';

UPDATE jobs
SET min_salary = 5000, max_salary = 7000
WHERE job_id = 'SY_ANAL';

UPDATE jobs
SET min_salary = 7000, max_salary = 18000
WHERE job_id = 'SY_ANAL';

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 18

Part B: Additional Practice 1 Solutions
1. Run the script buildvid1.sql to create all of the required tables and sequences needed for

this exercise.
Run the script buildvid2.sql to populate all the tables created through by the script
buildvid1.sql

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 19

Part B: Additional Practice 2 Solutions
2. Create a package named VIDEO with the following procedures and functions:

a. NEW_MEMBER: A public procedure that adds a new member to the MEMBER table. For the member
ID number, use the sequence MEMBER_ID_SEQ; for the join date, use SYSDATE. Pass all other
values to be inserted into a new row as parameters.

b. NEW_RENTAL: An overloaded public function to record a new rental. Pass the title ID number for
the video that a customer wants to rent and either the customer’s last name or his member ID number
into the function. The function should return the due date for the video. Due dates are three days
from the date the video is rented. If the status for a movie requested is listed as AVAILABLE in the
TITLE_COPY table for one copy of this title, then update this TITLE_COPY table and set the status
to RENTED. If there is no copy available, the function must return NULL. Then, insert a new record
into the RENTAL table identifying the booked date as today's date, the copy ID number, the member
ID number, the title ID number and the expected return date. Be aware of multiple customers with
the same last name. In this case, have the function return NULL, and display a list of the customers'
names that match and their ID numbers.

c. RETURN_MOVIE: A public procedure that updates the status of a video (available, rented, or
damaged) and sets the return date. Pass the title ID, the copy ID and the status to this procedure.
Check whether there are reservations for that title, and display a message if it is reserved. Update the
RENTAL table and set the actual return date to today’s date. Update the status in the TITLE_COPY
table based on the status parameter passed into the procedure.

d. RESERVE_MOVIE: A private procedure that executes only if all of the video copies requested in the
NEW_RENTAL procedure have a status of RENTED. Pass the member ID number and the title ID
number to this procedure. Insert a new record into the RESERVATION table and record the
reservation date, member ID number, and title ID number. Print out a message indicating that a
movie is reserved and its expected date of return.

e. EXCEPTION_HANDLER: A private procedure that is called from the exception handler of the public
programs. Pass the SQLCODE number to this procedure, and the name of the program (as a text
string) where the error occurred. Use RAISE_APPLICATION_ERROR to raise a customized error.
Start with a unique key violation (-1) and foreign key violation
(-2292). Allow the exception handler to raise a generic error for any other errors.

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 20

CREATE OR REPLACE PACKAGE video
IS

PROCEDURE new_member
(p_lname IN member.last_name%TYPE,
p_fname IN member.first_name%TYPE DEFAULT NULL,
p_address IN member.address%TYPE DEFAULT NULL,
p_city IN member.city%TYPE DEFAULT NULL,
p_phone IN member.phone%TYPE DEFAULT NULL);

FUNCTION new_rental
(p_member_id IN rental.member_id%TYPE,
p_title_id IN rental.title_id%TYPE)

RETURN DATE;

FUNCTION new_rental
(p_member_name IN member.last_name%TYPE,
p_title_id IN rental.title_id%TYPE)

RETURN DATE;

PROCEDURE return_movie
(p_title_id IN rental.title_id%TYPE,
p_copy_id IN rental.copy_id%TYPE,
p_status IN title_copy.status%TYPE);

END video;
/

Part B: Additional Practice 2 Solutions

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 21

Part B: Additional Practice 2 Solutions (continued)

CREATE OR REPLACE PACKAGE BODY video
IS

/* PRIVATE PROGRAMS */
PROCEDURE exception_handler

(p_code IN NUMBER,
p_context IN VARCHAR2)

IS
BEGIN

IF p_code = -1 THEN
RAISE_APPLICATION_ERROR(-20001, 'The number is

assigned to this member is already in use, try again.');
ELSIF p_code = -2291 THEN

RAISE_APPLICATION_ERROR(-20002, p_context || ' has
attempted to use a foreign key value that is invalid');

ELSE
RAISE_APPLICATION_ERROR(-20999, 'Unhandled error in ' ||

p_context || '. Please contact your application
administrator with the following information: '
|| CHR(13) || SQLERRM);

END IF;
END exception_handler;

PROCEDURE reserve_movie
(p_member_id IN reservation.member_id%TYPE,
p_title_id IN reservation.title_id%TYPE)

IS
CURSOR rented_cur IS

SELECT exp_ret_date
FROM rental
WHERE title_id = p_title_id
AND act_ret_date IS NULL;

BEGIN
INSERT INTO reservation (res_date, member_id, title_id)

VALUES(SYSDATE, p_member_id, p_title_id);
COMMIT;
FOR rented_rec IN rented_cur LOOP

DBMS_OUTPUT.PUT_LINE('Movie reserved. Expected back on: '
|| rented_rec.exp_ret_date);

EXIT WHEN rented_cur%found;
END LOOP;

EXCEPTION
WHEN OTHERS THEN

exception_handler(SQLCODE, 'RESERVE_MOVIE');
END reserve_movie;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 22

/* PUBLIC PROGRAMS */

PROCEDURE return_movie
(p_title_id IN rental.title_id%TYPE,
p_copy_id IN rental.copy_id%TYPE,
p_status IN title_copy.status%TYPE)

IS
v_dummy VARCHAR2(1);
CURSOR res_cur IS

SELECT *
FROM reservation
WHERE title_id = p_title_id;

BEGIN
SELECT ''

INTO v_dummy
FROM title
WHERE title_id = p_title_id;

UPDATE rental
SET act_ret_date = SYSDATE
WHERE title_id = p_title_id
AND copy_id = p_copy_id
AND act_ret_date IS NULL;

UPDATE title_copy
SET status = UPPER(p_status)
WHERE title_id = p_title_id

AND copy_id = p_copy_id;
FOR res_rec IN res_cur LOOP

IF res_cur%FOUND THEN
DBMS_OUTPUT.PUT_LINE('Put this movie on hold -- '||

'reserved by member #' || res_rec.member_id);
END if;

END LOOP;
EXCEPTION

WHEN OTHERS THEN
exception_handler(SQLCODE, 'RETURN_MOVIE');

END return_movie;

Part B: Additional Practice 2 Solutions (continued)

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 23

Part B: Additional Practice 2 Solutions (continued)

/* PUBLIC PROGRAMS */

FUNCTION new_rental
(p_member_id IN rental.member_id%TYPE,
p_title_id IN rental.title_id%TYPE)

RETURN DATE
IS

CURSOR copy_cur IS
SELECT *

FROM title_copy
WHERE title_id = p_title_id
FOR UPDATE;

v_flag BOOLEAN := FALSE;
BEGIN

FOR copy_rec IN copy_cur LOOP
IF copy_rec.status = 'AVAILABLE' THEN

UPDATE title_copy
SET status = 'RENTED'
WHERE CURRENT OF copy_cur;

INSERT INTO rental(book_date, copy_id, member_id,
title_id, exp_ret_date)

VALUES(SYSDATE, copy_rec.copy_id, p_member_id,
p_title_id, SYSDATE + 3);

v_flag := TRUE;
EXIT;

END IF;
END LOOP;
COMMIT;
IF v_flag THEN

RETURN (SYSDATE + 3);
ELSE

reserve_movie(p_member_id, p_title_id);
RETURN NULL;

END IF;
EXCEPTION

WHEN OTHERS THEN
exception_handler(SQLCODE, 'NEW_RENTAL');

END new_rental;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 24

Part B: Additional Practice 2 Solutions (continued)

/* PUBLIC PROGRAMS */
FUNCTION new_rental

(p_member_name IN member.last_name%TYPE,
p_title_id IN rental.title_id%TYPE)

RETURN DATE
IS

CURSOR copy_cur IS
SELECT *

FROM title_copy
WHERE title_id = p_title_id
FOR UPDATE;

v_flag BOOLEAN := FALSE;
p_member_id member.member_id%TYPE;
CURSOR member_cur IS

SELECT member_id, last_name, first_name
FROM member
WHERE LOWER(last_name) = LOWER(p_member_name)
ORDER BY last_name, first_name;

BEGIN
SELECT member_id

INTO p_member_id
FROM member
WHERE lower(last_name) = lower(p_member_name);

FOR copy_rec IN copy_cur LOOP
IF copy_rec.status = 'AVAILABLE' THEN

UPDATE title_copy
SET status = 'RENTED'
WHERE CURRENT OF copy_cur;

INSERT INTO rental (book_date, copy_id, member_id,
title_id, exp_ret_date)

VALUES (SYSDATE, copy_rec.copy_id, p_member_id,
p_title_id, SYSDATE + 3);

v_flag := TRUE;
EXIT;

END IF;
END LOOP;
COMMIT;
IF v_flag THEN

RETURN(SYSDATE + 3);
ELSE

reserve_movie(p_member_id, p_title_id);
RETURN NULL;

END IF;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 25

Part B: Additional Practice 2 Solutions (continued)

/* NEW RENTAL CONTINUED FROM PRIOR PAGE */
EXCEPTION

WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE(
'Warning! More than one member by this name.');

FOR member_rec IN member_cur LOOP
DBMS_OUTPUT.PUT_LINE(member_rec.member_id || CHR(9) ||

member_rec.last_name || ', ' || member_rec.first_name);
END LOOP;
RETURN NULL;

WHEN OTHERS THEN
exception_handler(SQLCODE, 'NEW_RENTAL');

END new_rental;

PROCEDURE new_member
(p_lname IN member.last_name%TYPE,
p_fname IN member.first_name%TYPE DEFAULT NULL,
p_address IN member.address%TYPE DEFAULT NULL,
p_city IN member.city%TYPE DEFAULT NULL,
p_phone IN member.phone%TYPE DEFAULT NULL)

IS
BEGIN

INSERT INTO member(member_id, last_name, first_name,
address, city, phone, join_date)

VALUES(member_id_seq.NEXTVAL, p_lname, p_fname,
p_address, p_city, p_phone, SYSDATE);

COMMIT;
EXCEPTION

WHEN OTHERS THEN
exception_handler(SQLCODE, 'NEW_MEMBER');

END new_member;
END video;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 26

Part B: Additional Practice 3 Solutions
3. The business hours for the video store are 8:00 a.m. to 10:00 p.m., Sunday through Friday, and

8:00 a.m. to 12:00 a.m. on Saturday. To ensure that the tables can only be modified
during these hours, create a stored procedure that is called by triggers on the tables.

a. Create a stored procedure called TIME_CHECK that checks the current time against business hours.
If the current time is not within business hours, use the RAISE_APPLICATION_ERROR procedure
to give an appropriate message.

b. Create a trigger on each of the five tables. Fire the trigger before data is inserted, updated, and
deleted from the tables. Call your TIME_CHECK procedure from each of these triggers.

c. Test your trigger.
Note: In order for your trigger to fail, you need to change the time to be outside the range of your

current time in class. For example, while testing, you may want valid video hours in your trigger to
be from 6:00 p.m. to 8:00 a.m.

CREATE OR REPLACE PROCEDURE time_check
IS
BEGIN

IF ((TO_CHAR(SYSDATE,'D') BETWEEN 1 AND 6)
AND
(TO_DATE(TO_CHAR(SYSDATE, 'hh24:mi'), 'hh24:mi')

NOT BETWEEN
TO_DATE('08:00', 'hh24:mi') AND TO_DATE('22:00', 'hh24:mi')))
OR
((TO_CHAR(SYSDATE, 'D') = 7)
AND
(TO_DATE(TO_CHAR(SYSDATE, 'hh24:mi'), 'hh24:mi')

NOT BETWEEN
TO_DATE('08:00', 'hh24:mi') AND TO_DATE('24:00', 'hh24:mi')))

THEN
RAISE_APPLICATION_ERROR(-20999,
'Data changes restricted to office hours.');

END IF;
END time_check;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 27

Part B: Additional Practice 3 Solutions (continued)

CREATE OR REPLACE TRIGGER member_trig
BEFORE INSERT OR UPDATE OR DELETE ON member

BEGIN
time_check;

END;
/
CREATE OR REPLACE TRIGGER rental_trig

BEFORE INSERT OR UPDATE OR DELETE ON rental
BEGIN

time_check;
END;
/
CREATE OR REPLACE TRIGGER title_copy_trig

BEFORE INSERT OR UPDATE OR DELETE ON title_copy
BEGIN

time_check;
END;
/
CREATE OR REPLACE TRIGGER title_trig

BEFORE INSERT OR UPDATE OR DELETE ON title
BEGIN

time_check;
END;
/
CREATE OR REPLACE TRIGGER reservation_trig

BEFORE INSERT OR UPDATE OR DELETE ON reservation
BEGIN

time_check;
END;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 28

Additional Practices:
Table Descriptions

and Data

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 2

Part A

The tables and data used in part A are the same as those in the appendix B, “Table Descriptions and
Data.”

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 3

Part B: Tables Used

SELECT * FROM tab;

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 4

Part B: MEMBER Table
DESCRIBE member

SELECT * FROM member;

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 5

Part B: RENTAL Table

DESCRIBE rental

SELECT * FROM rental;

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 6

Part B: RESERVATION Table

DESCRIBE reservation

SELECT * FROM reservation;

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 7

Part B: TITLE Table
DESCRIBE title

SELECT * FROM title;

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 8

Part B: TITLE_COPY Table

DESCRIBE title_copy

SELECT * FROM title_copy;

