Oracle9i: Develop PL/SQL
Program Units

Student Guide » Volume 2

40056GC10
Production 1.0
July 2001
D33491

ORACLE"

Author
Nagavalli Pataballa

Technical Contributors
and Reviewers

Anna Atkinson
Bryan Roberts
Caroline Pereda
Cedjas Zarco
Coley William
Daniel Gabel

Dr. Christoph Burandt
Hakan Lindfors
Helen Robertson
John Hoff
Lachlan Williams
Laszlo Czinkoczki
Laura Pezzini
Linda Boldt
Marco Verbeek
Natarajan Senthil
Priya Vennapusa
Roger Abuzal af
Ruediger Steffan
Sarah Jones
Stefan Lindblad
Susan Dee

Publisher
Sheryl Domingue

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure
and is also protected by copyright law. Reverse engineering of the software is
prohibited. If this documentation is delivered to a U.S. Government Agency of the
Department of Defense, then it is delivered with Restricted Rights and the following
legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate Il (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered
trademarks of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Contents

Preface

Curriculum Map

1 Overview of PL/SQL Subprograms
Course Objectives 1-2
Lesson Objectives 1-3
Oracle Internet Platform 1-4
PL/SQL Program Constructs 1-5
Overview of Subprograms 1-6
Block Structure for Anonymous PL/SQL Blocks 1-7
Block Structure for PL/SQL Subprograms 1-8
PL/SQL Subprograms 1-9
Benefits of Subprograms 1-10
Developing Subprograms by Using iSQL*Plus 1-11
Invoking Stored Procedures and Functions 1-12
Summary 1-13

2 Creating Procedures
Objectives 2-2
What Is a Procedure? 2-3
Syntax for Creating Procedures 2-4
Developing Procedures 2-5
Formal Versus Actual Parameters 2-6
Procedural Parameter Modes 2-7
Creating Procedures with Parameters 2-8
IN Parameters: Example 2-9
OUT Parameters: Example 2-10
Viewing OUT Parameters 2-12
IN OUT Parameters 2-13
Viewing IN OUT Parameters 2-14
Methods for Passing Parameters 2-15
DEFAULT Option for Parameters 2-16
Examples of Passing Parameters 2-17
Declaring Subprograms 2-18
Invoking a Procedure from an Anonymous PL/SQL Block 2-19
Invoking a Procedure from Another Procedure 2-20
Handled Exceptions 2-21
Unhandled Exceptions 2-23
Removing Procedures 2-25
Benefits of Subprograms 2-26
Summary 2-27
Practice 2 Overview 2-29

3 Creating Functions
Objectives 3-2
Overview of Stored Functions 3-3
Syntax for Creating Functions 3-4
Creating a Function 3-5
Creating a Stored Function by Using iSQL*Plus 3-6
Creating a Stored Function by Using iISQL*Plus: Example 3-7
Executing Functions 3-8
Executing Functions: Example 3-9
Advantages of User-Defined Functions in SQL Expressions 3-10
Invoking Functions in SQL Expressions: Example 3-11
Locations to Call User-Defined Functions 3-12
Restrictions on Calling Functions from SQL Expressions 3-13
Restrictions on Calling from SQL 3-15
Removing Functions 3-16
Procedure or Function? 3-17
Comparing Procedures and Functions 3-18
Benefits of Stored Procedures and Functions 3-19
Summary 3-20
Practice 3 Overview 3-21

4 Managing Subprograms
Objectives 4-2
Required Privileges 4-3
Granting Access to Data 4-4
Using Invoker’s-Rights 4-5
Managing Stored PL/SQL Objects 4-6
USER_OBJECTS 4-7
List All Procedures and Functions 4-8
USER_SOURCE Data Dictionary View 4-9
List the Code of Procedures and Functions 4-10
USER_ERRORS 4-11
Detecting Compilation Errors: Example 4-12
List Compilation Errors by Using USER_ERRORS 4-13
List Compilation Errors by Using SHOW ERRORS 4-14
DESCRIBE in iSQL*Plus 4-15
Debugging PL/SQL Program Units 4-16
Summary 4-17
Practice 4 Overview 4-19

5 Creating Packages
Objectives 5-2
Overview of Packages 5-3
Components of a Package 5-4
Referencing Package Objects 5-5
Developing a Package 5-6
Creating the Package Specification 5-8
Declaring Public Constructs 5-9
Creating a Package Specification: Example 5-10
Creating the Package Body 5-11
Public and Private Constructs 5-12
Creating a Package Body: Example 5-13
Invoking Package Constructs 5-15
Declaring a Bodiless Package 5-17
Referencing a Public Variable from a Stand-Alone Procedure 5-18
Removing Packages 5-19
Guidelines for Developing Packages 5-20
Advantages of Packages 5-21
Summary 5-23
Practice 5 Overview 5-26

6 More Package Concepts
Objectives 6-2
Overloading 6-3
Overloading: Example 6-4
Using Forward Declarations 6-7
Creating a One-Time-Only Procedure 6-9
Restrictions on Package Functions Used in SQL 6-10
User Defined Package: taxes _pack 6-11
Invoking a User-Defined Package Function from a SQL Statement 6-12
Persistent State of Package Variables: Example 6-13
Persistent State of Package Variables 6-15
Controlling the Persistent State of a Package Cursor 6-15
Executing PACK_CUR 6-17
PL/SQL Tables and Records in Packages 6-18
Summary 6-19
Practice 6 Overview 6-20

7 Oracle Supplied Packages
Objectives 7-2
Using Supplied Packages 7-3
Using Native Dynamic SQL 7-4
Execution Flow 7-5
Using the DBMS_SQL Package 7-6
Using DBMS_SQL 7-8
Using the EXECUTE IMMEDIATE Statement 7-9
Dynamic SQL Using EXECUTE IMMEDIATE 7-11
Using the DBMS_DDL Package 7-12
Using DBMS_JOB for Scheduling 7-13
DBMS_JOB Subprograms 7-14
Submitting Jobs 7-15
Changing Job Characteristics 7-17
Running, Removing, and Breaking Jobs 7-18
Viewing Information on Submitted Jobs 7-19
Using the DBMS_OUTPUT Package 7-20
Interacting with Operating System Files 7-21
What Is the UTL_FILE Package? 7-22
File Processing Using the UTL_FILE Package 7-23
UTL_FILE Procedures and Functions 7-24
Exceptions Specific to the UTL_FILE Package 7-25
The FOPEN and IS_OPEN Functions 7-26
Using UTL_FILE 7-27
The UTL_HTTP Package 7-29
Using the UTL_HTTP Package 7-30
Using the UTL_TCP Package 7-31
Oracle-Supplied Packages 7-32
Summary 7-37
Practice 7 Overview 7-38

8 Manipulating Large Objects
Objectives 8-2
What Is a LOB? 8-3
Contrasting LONG and LOB Data Types 8-4
Anatomy of a LOB 8-5
Internal LOBs 8-6
Managing Internal LOBs 8-7
What Are BFILEs? 8-8
Securing BFILEs 8-9
A New Database Object: DIRECTORY 8-10
Guidelines for Creating DIRECTORY Objects 8-11

Vi

Managing BFILEs 8-12

Preparing to Use BFILEs 8-13

The BFILENAME Function 8-14

Loading BFILEs 8-15

Migrating from LONG to LOB 8-17

The DBMS_LOB Package 8-19
DBMS_LOB.READ and DBMS_LOB.WRITE 8-22
Adding LOB Columns to a Table 8-23

Populating LOB Columns 8-24

Updating LOB by Using SQL 8-26

Updating LOB by Using DBMS_LOB in PL/SQL 8-27
Selecting CLOB Values by Using SQL 8-28
Selecting CLOB Values by Using DBMS_LOB 8-29
Selecting CLOB Values in PL/SQL 8-30
Removing LOBs 8-31

Temporary LOBs 8-32

Creating a Temporary LOB 8-33

Summary 8-34

Practice 8 Overview 8-35

Creating Database Triggers

Objectives 9-2

Types of Triggers 9-3

Guidelines for Designing Triggers 9-4

Database Trigger: Example 9-5

Creating DML Triggers 9-6

DML Trigger Components 9-7

Firing Sequence 9-11

Syntax for Creating DML Statement Triggers 9-13

Creating DML Statement Triggers 9-14

Testing SECURE_EMP 9-15

Using Conditional Predicates 9-16

Creating a DML Row Trigger 9-17

Creating DML Row Triggers 9-18

Using OLD and NEW Qualifiers 9-19

Using OLD and NEW Qualifiers: Example Using Audit Emp_Table 9-20
Restricting a Row Trigger 9-21

INSTEAD OF Triggers 9-22

Creating an INSTEAD OF Trigger 9-23

Creating an INSTEAD OF Trigger 9-26

Differentiating Between Database Triggers and Stored Procedures 9-27
Differentiating Between Database Triggers and Form Builder Triggers 9-28
Managing Triggers 9-29

DROP TRIGGER Syntax 9-30

Vii

10

Trigger Test Cases 9-31

Trigger Execution Model and Constraint Checking 9-32

Trigger Execution Model and Constraint Checking: Example 9-33

A Sample Demonstration for Triggers Using Package Constructs 9-34
After Row and After Statement Triggers 9-35

Demonstration: VAR_PACK Package Specification 9-36
Demonstration: Using the AUDIT_EMP Procedure 9-38

Summary 9-39

Practice 9 Overview 9-40

More Trigger Concepts

Objectives 10-2

Creating Database Triggers 10-3

Creating Triggers on DDL Statements 10-4
Creating Triggers on System Events 10-5

LOGON and LOGOFF Trigger Example 10-6
CALL Statements 10-7

Reading Data from a Mutating Table 10-8

Mutating Table: Example 10-9

Implementing Triggers 10-11

Controlling Security Within the Server 10-12
Controlling Security with a Database Trigger 10-13
Using the Server Facility to Audit Data Operations 10-14
Auditing by Using a Trigger 10-15

Enforcing Data Integrity Within the Server 10-16
Protecting Data Integrity with a Trigger 10-17
Enforcing Referential Integrity Within the Server 10-18
Protecting Referential Integrity with a Trigger 10-19
Replicating a Table Within the Server 10-20
Replicating a Table with a Trigger 10-21
Computing Derived Data within the Server 10-22
Computing Derived Values with a Trigger 10-23
Logging Events with a Trigger 10-24

Benefits of Database Triggers 10-26

Managing Triggers 10-27

Viewing Trigger Information 10-28

Using USER_TRIGGERS 10-29

Listing the Code of Triggers 10-30

Summary 10-31

Practice 10 Overview 10-32

viii

11 Managing Dependencies
Objectives 11-2
Understanding Dependencies 11-3
Dependencies 11-4
Local Dependencies 11-5
A Scenario of Local Dependencies 11-6
Displaying Direct Dependencies by Using USER_DEPENDENCIES 11-7
Displaying Direct and Indirect Dependencies 11-8
Displaying Dependencies 11-9
Another Scenario of Local Dependencies 11-10
A Scenario of Local Naming Dependencies 11-11
Understanding Remote Dependencies 11-12
Concepts of Remote Dependencies 11-13
REMOTE_DEPENDENCIES_MODE Parameter 11-14
Remote Dependencies and Time Stamp Mode 11-15
Remote Procedure B Compiles at 8:00 a.m. 11-16
Local Procedure A Compiles at 9:00 a.m. 11-17
Execute Procedure A 11-18
Remote Procedure B Recompiled at 11:00 a.m. 11-19
Execute Procedure A 11-20
Signature Mode 11-21
Recompiling a PL/SQL Program Unit 11-22
Unsuccessful Recompilation 11-23
Successful Recompilation 11-24
Recompilation of Procedures 11-25
Packages and Dependencies 11-26
Summary 11-28
Practice 11 Overview 11-29

PL/SQL Fundamentals Quiz

PL/SQL Fundamentals Quiz Answers
Practice Solutions

Table Descriptions and Data

Review of PL/SQL

m m O O W >

Creating Program Units by Using Procedure Builder
Index

Additional Practices

Additional Practice Solutions

Additional Practices: Table Descriptions and Data

iX

Additional
Practices

Additional Practices Overview

These additional practices are provided as a supplement to the course Develop PL/SQL Program Units.
In these practices, you apply the concepts that you learned in Develop PL/SQL Program Units.

The additional practices comprise of two parts:

Part A provides supplemental practice to create stored procedures, functions, packages, and triggers,
and to use the Oracle-supplied packages with i SQL* Plus as the development environment. The tables
used in this portion of the additiona practicesinclude EMPLOYEES, JOBS, JOB_HI STORY, and
DEPARTMENTS.

Part B is a case study which can be completed at the end of the course. This part supplements the
practices for creating and managing program units. The tables used in the case study are based on a
video database and contain the Tl TLE, TI TLE_COPY, RENTAL, RESERVATI ON, and MEMBER
tables.

An entity relationship diagram is provided at the start of part A and part B. Each entity relationship
diagram displays the table entities and their relationships. More detailed definitions of the tables and
the data contained in each of thetablesis provided in the appendix Additional Practices: Table
Descriptions and Data.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 2

Part A: Entity Relationship Diagram

Human Resources

HR

JOB_HISTORY
employee_id
start_date
end date
joo_id
department_id

DEPARTMENTS
department_id
department_name
manage”_id
location id

h

N
i
1

JOBS
job_id
jok_title
min_salary
max_salary

EMPLOYEES
employee_id
first_name
last_name
gmail
phone_number
hire date
job_id
salary
commission_pct
manage”_id
department_id

LOCATIONS
location_id
street address
postal _code
City
state province
country id

4

COUNTRIES
country_id
country_name
region_id

4

REGIONS
region_id
region_name

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 3

Part A
Note: These exer cises can be used for extra practice when discussing how to create procedur es.

1. Inthispractice, create a program to add anew job into the JOBS table.
a. Create a stored procedure called ADD_J OBS to enter anew order into the JOBS table.

The procedure should accept three parameters. The first and second parameters suppliesajob ID
and ajob title. The third parameter supplies the minimum salary. Use the maximum salary for the
new job as twice the minimum salary supplied for thejob ID.

b. Disable the trigger SECURE DML before invoking the procedure. Invoke the procedure to add a
new job with job ID SY_ANAL, job title Syst em Anal yst , and minimum salary of 6,000.

c. Verify that arow was added and remember the new job ID for use in the next exercise.
Commit the changes.

[JOBID | JOB TITLE |MIN_SALARY |[MAX_SALARY |
ISY_ANAL |System Analyst | BOO00 | 12000

2. Inthis practice, create a program to add a new row to the JOB_HI STORY table for an existing
employee.

Note: Disable al triggers on the EMPLOYEES, JOBS, and JOB_HI STORY tables before invoking

the procedure in part b. Enable all these triggers after executing the procedure.

a. Create a stored procedure called ADD_JOB_HI ST to enter anew row into the JOB_HI STORY
table for an employee who is changing hisjob to the new job ID that you created in question 1b.

Use the employee I D of the employee who is changing the job and the new job ID for the
employee as parameters. Obtain the row corresponding to this employee ID from the
EMPLOYEES tableand insert it into the JOB_HI STORY table. Make hire date of this employee
asthe start date and today's date as end date for thisrow inthe JOB_HI STORY table.

Change the hire date of this employee in the EMPLOYEES table to today's date. Update the job
ID of thisemployeeto thejob ID passed as parameter (Use the job ID of the job created in
question 1b) and salary equal to minimum salary for that job ID + 500.

Include exception handling to handle an attempt to insert a nonexistent employee.
b. Disable triggers (Refer to the note at the beginning of this question.)
Execute the procedure with employee ID 106 and job ID SY_ANAL as parameters.
Enable the triggers that you disabled.
c. Query the tables to view your changes, and then commit the changes.

[EMPLOYEE_ID [START_DAT [END_DATE [JOB_ID [DEPARTMENT_ID |

| 106 05-FEB9S DaMAYO1 TPROG| B0

! JOB_ID i SALARY
ISY_ANAL | F500

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 4

Part A

3. Inthispractice, create a program to update the minimum and maximum salaries for ajob in the JOBS
table.

a. Create a stored procedure called UPD_SAL to update the minimum and maximum salaries for a
specificjob ID in the JOBS table.

Pass three parameters to the procedure: the job 1D, a new minimum salary, and a new maximum salary
for the job. Add exception handling to account for aninvalid job ID in the JOBS table. Also, raise an

exception if the maximum salary supplied is less than the minimum salary. Provide an appropriate
message that will be displayed if the row in the JOBS table islocked and cannot be changed.
b. Execute the procedure. Y ou can use the following data to test your procedure:
EXECUTE upd_sal (' SY_ANAL', 7000, 140)
EXECUTE upd_sal (' SY_ANAL', 7000, 14000)

ERROR .. MAX SAL SHOULD BE > MIN SAL
EECIN upd_sal (SY_ANAL!, 7000, 140); END,
*

ERROR at line 1:

OFA-20001: Drata error. Iax salary should be more than min salary
CORA-06512: at "SHOUPD_SALY, line 32

ORA-06512: at line 1

PLAEAL procedure successfully completed.
. Query the JOBS table to view your changes, and then commit the changes.

[JOB ID | JOB TITLE [MIN _SALARY |MAX_SALARY
ISY_AMAL |System Analyst | 7000 | 14000 |

Commit complete.

Oracle9i: Develop PL/SQL Program Units - Additional Practices -5

Part A

In this practice, create a procedure to monitor whether employees have exceeded their

average salary limits.

Add a column to the EMPLOYEES table by executing the following command:

(I abaddA_4. sql)

ALTER TABLE enpl oyees

ADD (sal _|imt_indicate VARCHAR2(3) DEFAULT 'NO

CONSTRAI NT enp_sallinmt_ck CHECK
(sal _limt_ indicate IN ('YES', '"NO)));

Write astored procedure called CHECK _AVG_SAL. This checks each employee's average

salary limit from the JOBS table against the salary that this employee hasin the EMPLOYEES
table and updatesthe SAL_LI1 M T_I NDI CATE column in the EMPLOYEES table when this
employee has exceeded his or her average salary limit.

Create a cursor to hold employee |Ds, salaries, and their average salary limit. Find the average
salary limit possible for an employee'sjob from the J OBS table. Compare the average salary
limit possible for each employee to exact salaries and if the salary is more than the average salary
limit, set the employee’'s SAL_LI M T_I NDI CATE column to YES; otherwise, set it to NO.

Add exception handling to account for arecord being locked.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 6

Part A
c. Executethe procedure, and then test the results.
Query the EMPLOYEES table to view your maodifications, and then commit the changes.

| JOB ID | MIN_SALARY | SALARY | MAX_SALARY
|SY_ANAL | 7000 | 7000 | 14000

Note: These exer cises can be used for extra practice when discussing how to create functions.
5. Create a program to retrieve the number of years of service for a specific employee.
a. Create astored function called GET_SERVI CE_YRS to retrieve the total number of years
of service for a specific employee.

The function should accept the employee |D as a parameter and return the number of years
of service. Add error handling to account for an invalid employee ID.
b. Invoke the function. Y ou can use the following data:

EXECUTE DBMs_QUTPUT. PUT_LI NE(get _service_yrs(999))

Hint: The above statement should produce an error message because there is no employee

with employee ID 999.

EXECUTE DBMS_QUTPUT. PUT_LINE (' Approximately '
get _service_yrs(106) || '

Hint: The above statement should be successful and return the number of years of service

for employee with employee ID 106.

C. QuerytheJOB_HI STORY and EMPLOYEES tables for the specified employee to verify
that the modifications are accurate.

years')

| EMPLOYEE_ID | JOB_ID | DURATION
I 102 [IT_PROG | 552876712
| 101 |AC_ACCOUNT | 410136936
| 101 |AC_MGR | 3.38082192
i 201 |MK_REP | 3.83835616
| 114 |ST_CLERK ! 1.77260274
I 122 |ST_CLERK I 097260274
| 200 |AD_ASST | 575342466
i 176 |S4_REP ! TT260274
l 176 [SA_MAN | 987260274
| 200 [AC_ACCOUNT | 4 50410858
| 106 |IT_PROG | 324556171

11 rows selected.

I JOB_ID | DURATION

SY_ANAL | 000082718

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 7

Part A

6. Inthis practice, create a program to retrieve the number of different jobs that an employee worked
during his or her service.

a. Create astored function called GET_JOB_COUNT to retrieve the total number of different
jobs on which an employee worked.

The function should accept one parameter to hold the employee ID. The function will return
the number of different jobs that employee worked until now. Thi s also includes the present
job. Add exception handling to account for an invalid employee ID.

Hint: Verify digtinct job IDsfrom the JOB_HI STORY table. Verify whether the current
job ID is one of the job I1Ds on which the employee worked.

b. Invoke the function. Y ou can use the following data:

EXECUTE DBMs QUTPUT. PUT_LI NE(' Enpl oyee worked on ' ||
get _job count(176) || ' different jobs.")

Employee wotked on 2 different jobs.
PLAZOL procedure successfully completed.

Note: These exercises can be used for extra practice when discussing how to create packages.

7. Create a package specification and body called EMP_JOB_PKG that contains your ADD_J OBS,
ADD _JOB_HI ST, and UPD_SAL procedures, aswell asyour GET_SERVI CE_YRS function.

a. Makeal the congtructs public. Consider whether you still need the stand-al one procedures
and functions that you just packaged.

b. Disableall the triggers before invoking the procedure and enable them after invoking the
procedure, as suggested in question 2b.

Invoke your ADD_J OBS procedure to create anew job with ID PR_MAN, job title Publ i ¢
Rel ati ons Manager , and salary of 6,250.

Invoke your ADD _JOB_ HI ST procedure to modify the job of employee with employee ID
110tojob ID PR_MAN.

Hint: All of the above callsto the functions should be successful.
c. QuerytheJOBS, JOB_HI STORY, and EMPLOYEES tables to verify the results.

|JOB_ID | JOB_TITLE [MIN_SALARY [MAX SALARY
IPR_MAN |Public Relations Manager | 5250 | 12500

[EMPLOYEE_ID [START_DAT [END_DATE| JOB_ID [DEPARTMENT_ID
| 110 [28-SEP-97 [D4-MAY-01 [FI_ACCOUNT | A00

| JOB_ID | SALARY |
IPR_MAMN ! B750 |

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 8

Part A
Note: These exer cises can be used for extra practice when discussing how to use Oracle-supplied
packages.
8. Inthispractice, use an Oracle-supplied package to schedule your GET_JOB_COUNT
function to run semiannually.
a. Create an anonymous block to call the DBMS_JOB Oracle-supplied package.
Invoke the package function DBM5_JOB. SUBM T and pass the following four parameters: a

variable to hold the job number, the name of the subprogram you want to submit, SYSDATE as
the date when the job will run, and an interval of ADDMONTHS(SYSDATE, 6) for

semiannual submission.
Note: To force the job to runimmediately, call DBMS _JOB. RUN(your _j ob_nunber) after
calling DBMS_JOB. SUBM T. This executes the job waiting in the queue.
Execute the anonymous block.

b. Check your results by querying the EMPLOYEES and JOB_HI STORY tables and querying the
USER_JOBS dictionary view to see the status of your job submission.

Y our output should appear similar to the following output:

lJoB | WHAT ISCHEMA_USER [LAST_DATE [NEXT_DATE | INTERVAL

[BEGIN ! ' | ! |
1 |DBMS_OUTPUT.PUT_LINE |SHD 04-MAT-01 [04-NOY-01 ;’;‘?D—MONTHB':EYBDATE"
i

|(get_job_count(1103; END; |

Note: These exer cises can be used for extra practice when discussing how to create database
triggers.

9. Inthis practice, create atrigger to ensure that the job 1D of any new employee being hired to
department 80 (the Sales department) is a sales manager or representative.

a. Disable dl the previously created triggers as discussed in question 2b.
b. Createatrigger called CHK_SALES_JOB.

Fire the trigger before every row that is changed after insertions and updatesto the JOB | D
column in the EMPLOYEES table. Check that the new employee hasajob ID of SA_MAN or
SA_REP inthe EMPLOYEES table. Add exception handling and provide an appropriate message
so that the update fails if the new job ID is not that of a sales manager or representative.

c. Testthetrigger. You can usethe following data:

UPDATE enpl oyees
SET job_id = ' AD VP
WHERE enpl oyee id = 106;
UPDATE enpl oyees
SET job_id = 'AD VP
WHERE enpl oyee id = 179;
UPDATE enpl oyees
SET job_id = ' SA MAN
WHERE enpl oyee id = 179;

Hint: The middle statement should produce the error message specified in your trigger.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 9

Part A
d. Query the EMPLOYEES table to view the changes. Commit the changes.

| JOBID | DEPARTMENT ID | SALARY |
1SA_MAN | a0 | 200 |

e. Enableall thetriggersthat you previously disabled, as discussed in question 2b.

10. Inthis practice, create atrigger to ensure that the minimum and maximum salaries of ajob are
never modified such that the salary of an existing employee with that job ID is out of
the new range specified for the job.

a. Createatrigger called CHECK SAL RANGE.

Fire the trigger before every row that is changed when datais updated inthe M N_SALARY and
MAX_SALARY columnsin the JOBS table. For any minimum or maximum salary value that is
changed, check that the salary of any existing employee with that job ID in the EMPLOYEES
table falls within the new range of salaries specified for this job ID. Include exception handling
to cover asalary range change that affects the record of any existing employee.

b. Testthetrigger. You can usethe following data:
SELECT * FROM jobs WHERE job_id = 'SY_ANAL';

| JOB ID |JOB TITLE |[MIN_SALARY MAX SALARY |

iS}rStem
|Analyst

S _ANAL 7000 ‘ 14000 ‘

SELECT enpl oyee_id, job_id, salary
FROM enpl oyees
VWHERE job_id = 'SY_ANAL';

UPDATE | obs

SET m n_salary = 5000, max_salary = 7000
WHERE job_id = 'SY_ANAL';

UPDATE | obs
SET m n_salary = 7000, max_salary = 18000

WHERE job_id = ' SY_ANAL';

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 10

Part B: Entity Relationship Diagram

RESERVATION]\f(ir

#* reservation date J/ |

/_set up for

responsible
for

4)

MEMBER
#* 1D
* last name

o first name
for

responsible

the subject
of

made against

]

(" TITLE)
#* 1D
* title
* description
o rating
o category
o release date
\§ J
available as

a copy

TITLE_COPY
#* 1D
* status

o address
0 City

o phone

* join date

the subject of

create
for

RENTAL

#* book date
0 act ret date
0 exp ret date

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 11

Part B

In this exercise, create a package named VI DEOthat contains procedures and functions for avideo
store application. This application allows customers to become a member of the video store. Any
members can rent movies, return rented movies, and reserve movies. Additionally, create atrigger to
ensure that any datain the video tablesis modified only during business hours.

Create the package using iSQL*Plus and use the DBMS_OUTPUT Oracle supplied package to display
messages.

The video store database contains the following tables: TI TLE, TI TLE_COPY, RENTAL,
RESERVATI ON, and MEMBER. The entity relationship diagram is shown on the previous page.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 12

Part B

Run the script bui | dvi d1. sql to create al of the required tables and sequences needed for
this exercise.

Run the script bui | dvi d2. sql to populate al the tables created through by the script
bui | dvi d1. sql

1

Create a package named VI DEOwith the following procedures and functions:

a

NEW MEMBER: A public procedure that adds a new member to the VEMBER table. For
the member ID number, use the sequence VEMBER | D_SEQ; for the join date, use
SYSDATE. Pass al other valuesto be inserted into a new row as parameters.

NEW RENTAL : An overloaded public function to record a new rental. Pass the title ID
number for the video that a customer wants to rent and either the customer’ s last name or
his member ID number into the function. The function should return the due date for the
video. Due dates are three days from the date the video isrented. If the status for a
movie requested islisted as AVAI LABLE inthe Tl TLE_COPY table for one copy of
thistitle, then update this TI TLE_COPY table and set the statusto RENTED. If thereis
no copy available, the function must return NULL. Then, insert anew record into the
RENTAL table identifying the booked date as today's date, the copy ID number, the
member ID number, the title ID number and the expected return date. Be aware of
multiple customers with the same last name. In this case, have the function return NULL,
and display alist of the customers names that match and their ID numbers.

RETURN_MOVI E: A public procedure that updates the status of avideo (available,
rented, or damaged) and sets the return date. Pass thetitle ID, the copy 1D and the status
to this procedure. Check whether there are reservations for that title, and display a
message if it is reserved. Update the RENTAL table and set the actual return date to
today’ s date. Update the statusin the TI TLE_COPY table based on the status parameter
passed into the procedure.

RESERVE_MOVI E: A private procedure that executes only if all of the video copies
requested in the NEW RENTAL procedure have a status of RENTED. Pass the member

ID number and the title ID number to this procedure. Insert a new record into the
RESERVATI ON table and record the reservation date, member |D number, and title ID

number. Print out a message indicating that a movieis reserved and its expected date of
return.

EXCEPTI ON_HANDLER: A private procedure that is called from the exception handler
of the public programs. Passto this procedure the SQLCODE number, and the name of
the program (as a text string) where the error occurred. Use

RAI SE_APPLI CATI ON_ERROR to raise a customized error. Start with a unique key
violation (-1) and foreign key violation

(-2292). Allow the exception handler to raise a generic error for any other errors.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 13

Part B

Y ou can use the following data to test your routines:
EXECUTE vi deo. new_nenber

(' Haas', 'Janes', 'Chestnut Street', 'Boston', '617-123-4567")
PLIZQL procedure successfully completed.

EXECUTE vi deo. new_nenber
("Biri', "Allan', 'H awatha Drive', 'New York', '516-123-4567")

PLIZQL procedure successfully completed.
EXECUTE DBMS_OUTPUT. PUT_LI NE(vi deo. new_rental (110, 98))

09-MAR-01
PLISQL procedure successfully completed.

EXECUTE DBMS_OUTPUT. PUT_LI NE(vi deo. new_rent al (109, 93))

09-MAR-01
PLISQL procedure successfully completed.

EXECUTE DBMS_OUTPUT. PUT_LI NE(vi deo. new_rent al (107, 98))

Mowme reserved. Expected back on: 05-MAE-01
PLISOL procedure successhilly completed.

EXECUTE DBMs_OQUTPUT. PUT_LI NE(vi deo. new rental ('Biri', 97))

“Warning! More than one member by this name.
111 By, Allan

108 Biri, Ben

PLISQL procedure successfully completed.

EXECUTE DBMs_QUTPUT. PUT LI NE(vi deo. new rental (97, 97))

BEEGIN DEMSE OTUTPUT PUT_LINE(wdes new_rental(%7, 970, END;
=

EEECE at line 1

OFA-20002: WEW _EENTAT has

attempted to use a foreign key value that 15 mvalid

OEA-06512: at "PLPTT VIDEQ", line 13

OFA-06512: at "PLPTT VIDEQ", line 120

OFA-06512: at line 1

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 14

Part B

EXECUTE vi deo. return_novi e(98, 1, 'AVAI LABLE)

Put thiz mowme on hold -- reserved by member #107
PLIZOQL procedure successfully completed.

EXECUTE vi deo. return_novi e(95, 3, 'AVAI LABLE')

PLIZOL procedure successfully completed.

EXECUTE vi deo.return_novi e(111, 1, 'RENTED)

BEGIN wideo return meowe(111, 1, BRENTEDY; END;

= o

EEEOE at line 1:

OEA-20999: TInhandled error in EETUEN WOVIE Please contact wour application
admimstrator with the following mformation: OFA-01403: no data found
OFA-06512: at "PLPTU VIDEQO", line 16

OFA-06512: at "PLPU VIDEO", line 80

COEA-06512: at line 1

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 15

Part B

3.

The business hours for the video store are 8:00 am. to 10:00 p.m., Sunday through Friday, and
8:00 am. to 12:00 am. on Saturday. To ensure that the tables can only be modified

during these hours, create a stored procedure that is called by triggers on the tables.

Create astored procedure called TI ME_CHECK that checks the current time against business
hours. If the current time is not within business hours, use the RAI SE_APPLI CATI ON_ERROR
procedure to give an appropriate message.

Create atrigger on each of the five tables. Fire the trigger before datais inserted, updated, and
deleted from the tables. Call your Tl ME_CHECK procedure from each of these triggers.

Test your trigger.

Note: In order for your trigger to fail, you need to change the time to be outside the range of
your current timein class. For example, while testing, you may want valid video hoursin your
trigger to be from 6:00 p.m. to 8:00 am.

Oracle9i: Develop PL/SQL Program Units - Additional Practices - 16

Additional
Practice
Solutions

Part A: Additional Practice 1 Solutions

1
a

b.

In this practice, create a program to add a new job into the JOBS table.
Create a stored procedure called ADD_J OBS to enter anew order into the JOBS table.

The procedure should accept three parameters. The first and second parameters suppliesajob ID and
ajob title. Thethird parameter supplies the minimum salary. Use the maximum salary for the new
job as twice the minimum salary supplied for the job ID.
CREATE OR REPLACE PROCEDURE add_j obs
(p_jobid IN j obs.job_i dWYPE,
p_jobtitle IN jobs.job title%lYPE,

p_nmnsal [|INjobs.mn_salary%YPE
)
IS
v_maxsal jobs. max_sal ar y%d YPE;
BEG N
v_maxsal := 2 * p_mnsal;

I NSERT | NTO | obs

(job_id, job_title, mn_salary, max_sal ary)
VALUES

(p_jobid, p_jobtitle, p_mnsal, v_maxsal);

DBVS_OUTPUT. PUT_LI NE (' Added the foll owi ng row
into the JOBS table ...");

DBVB_OUTPUT. PUT_LINE (p_jobid || ' ' || p_jobtitle |
|| p_mnsal |] " || v_maxsal);

END add_j obs;
/

Disable the trigger SECURE _DM_ before invoking the procedure. Invoke the procedure to add a new
jobwith job ID SY_ANAL, job title Syst em Anal yst , and minimum salary of 6,000.

ALTER TRI GGER secure_enpl oyees DI SABLE;
EXECUTE add_j obs (' SY_ANAL', 'System Anal yst', 6000)

Verify that arow was added and remember the new job 1D for use in the next exercise.

Commit the changes.
SELECT *

FROM | obs
VWHERE job_id = 'SY_ANAL';

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions -2

Part A: Additional Practice 2 Solutions

2.

In this practice, create a program to add a new row to the JOB_HI STORY table, for an existing
employee.

Note: Disable all triggers on the EMPLOYEES, JOBS, and JOB_HI STORY tables before

invoking the procedure in part b. Enable all these triggers after executing the procedure.

Create astored procedure called ADD_JOB_HI ST to enter anew row into the JOB_HI STORY
table for an employee who is changing his job to the new job ID that you created in question 1b.
Use the employee ID of the employee who is changing the job and the new job ID for the employee
as parameters. Obtain the row corresponding to this employee ID from the EMPLOYEES table and
insertitintothe JOB_HI STORY table. Make hire date of this employee as start date and today's
date as end date for thisrow inthe JOB_HI STORY table.

Change the hire date of this employee in the EMPLOYEES table to today's date. Update the job 1D of
this employee to the job ID passed as parameter (Use the job ID of the job created in question 1b)
and salary equal to minimum salary for that job ID + 500.

Include exception handling to handle an attempt to insert a nonexistent employee.

CREATE OR REPLACE PROCEDURE add_j ob_hi st
(p_enmpid I N enpl oyees. enpl oyee_i d%'YPE,

p_jobid IN jobs.job_ i dWYPE)

BEG N

I NSERT | NTO j ob_hi story
SELECT enpl oyee_id, hire_date, SYSDATE, job_id, departnent_id
FROM enpl oyees
WHERE enpl oyee_id = p_enpid;
UPDATE enpl oyees
SET hire_date = SYSDATE,
job_id = p_jobid,
salary = (SELECT m n_sal ary+500
FROM j obs
VWHERE job_id = p_jobid)
WHERE enpl oyee _id = p_enpid;

DBVS_OQUTPUT. PUT_LI NE (' Added enpl oyee ' || p_enpi d] |
' details to the JOB H STORY table');

DBMS_OQUTPUT. PUT_LI NE (' Updated current job of enployee '
|| p_enpid|| " to '[| p_jobid);

EXCEPTI ON

VWHEN NO DATA FOUND THEN
RAI SE_APPLI CATI ON_ERROR (- 20001, ' Enpl oyee does not exist!');

END add_j ob_hi st

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 3

Part A: Additional Practice 2 Solutions (continued)

b. Disabletriggers. (Seethe note at the beginning of this question.)
Execute the procedure with employee ID 106 and job ID SY_ANAL as parameters.
Enable the triggers that you disabled.
ALTER TABLE enpl oyees DI SABLE ALL TRI GGERS;
ALTER TABLE j obs DI SABLE ALL TRI GCERS;
ALTER TABLE j ob_hi story DI SABLE ALL TRI GGERS;

EXECUTE add_j ob_hi st (106, ' SY_ANAL')

ALTER TABLE enpl oyees ENABLE ALL TRI GCERS;
ALTER TABLE jobs ENABLE ALL TRI GCERS;
ALTER TABLE job_history ENABLE ALL TRI GGERS;

c. Query the tables to view your changes, and then commit the changes.

SELECT * FROM job_history
WHERE enpl oyee id = 106;

SELECT job_id, salary FROM enpl oyees
WHERE enpl oyee id = 106;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions -4

Part A: Additional Practice 3 Solutions

3. In this practice, create a program to update the minimum and maximum salaries for ajob in the
JOBS table.

a. Create astored procedure called UPD_SAL to update the minimum and maximum salaries for a
specificjob ID inthe JOBS table.

Pass three parameters to the procedure: the job 1D, a new minimum salary, and a new maximum
salary for the job. Add exception handling to account for aninvalid job ID in the JOBS table. Also,
raise an exception if the maximum salary supplied isless than the minimum salary. Provide an
appropriate message that will be displayed if the row in the JOBS table is locked and cannot be
changed.

CREATE OR REPLACE PROCEDURE upd_sal

(p_jobid I N jobs.job_id% ype,

p_mnsal |IN jobs. mn_sal ary% ype,

p_maxsal | N jobs. max_sal ary% ype)
IS

v_dunmmy VARCHAR2(1) ;

e_resource_busy EXCEPTI ON,

sal _error EXCEPTI ON,;

PRAGVA EXCEPTION INIT (e_resource_busy , -54);
BEG N

IF (p_maxsal < p_minsal) THEN
DBMS_OUTPUT. PUT_LI NE(" ERROR. MAX SAL SHOULD BE > M N SAL');
RAI SE sal _error;
END | F;
SELECT '
I NTO v_dunmy
FROM j obs
VWHERE job_id = p_jobid
FOR UPDATE OF min_sal ary NOWMI T,

UPDATE | obs
SET mn_salary = p_mnsal,
max_sal ary = p_naxsal
VWHERE job_id = p_jobid;
EXCEPTI ON

VWHEN e_resour ce_busy THEN
RAI SE_APPLI CATI ON_ERROR (-20001, 'Job information is
currently locked, try later.");
WHEN NO_DATA FOUND THEN
RAI SE_APPLI CATI ON_ERROR
(-20001, 'This job ID does not exist');
WHEN sal error THEN

RAI SE_APPLI CATI ON_ERROR(- 20001, ' Data error.. Max sal ary shoul d
be nmore than nin salary');

END upd_sal ;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions -5

Part A: Additional Practice 3 and 4 Solutions
b. Execute the procedure. Y ou can use the following data to test your procedure:
EXECUTE upd_sal ('SY_ANAL', 7000, 140)
EXECUTE upd_sal (' SY_ANAL', 7000, 14000)

¢. Query the JOBS tableto view your changes, and then commit the changes.
SELECT *
FROM | obs
VWHERE job_id = 'SY_ANAL';

4. Inthispractice, create a procedure to monitor whether employees have exceeded their average
saary limits.
a. Add acolumn to the EMPLOYEES table by executing the following command: (I abaddA 4. sql)
ALTER TABLE enpl oyees
ADD (sal _|imt_indicate VARCHAR2(3) DEFAULT 'NO
CONSTRAI NT enp_sallinmit_ck CHECK
(sal _limt_ indicate IN ('YES', '"NO)));

b. Write a stored procedure called CHECK _AVG_SAL which checks each employee's average
salary limit from the J OBS table against the salary that this employee hasin the EMPLOYEES
table and updatesthe SAL_LI M T_I NDI CATE column in the EMPLOYEES table when this
employee has exceeded his or her average salary limit.

Create a cursor to hold employee Ids, salaries, and their average salary limit. Find the average
salary limit possible for an employee'sjob from the JOBS table. Compare the average salary
limit possible per employee to their salary and if the salary is more than the average salary

limit, set the employee’'s SAL_LI M T_I NDI CATE column to YES; otherwise, set it to NO. Add
exception handling to account for arecord being locked.

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 6

Part A: Additional Practice 4 Solutions (continued)
CREATE OR REPLACE PROCEDURE check avg_ sal
IS
v_avg_sal NUMBER
CURSOR enp_sal _cur IS
SELECT enployee id, job id, salary
FROM enpl oyees

FOR UPDATE;
e_resource_busy EXCEPTI ON,;
PRAGVA EXCEPTI ON_I NI T(e_r esour ce_busy, -54);
BEG N

FOR r_enmp IN enp_sal _cur LOOP
SELECT (max_salary + mn_salary)/2
I NTO v_avg_sal
FROM j obs
WHERE jobs.job id = r_enp.job_id;
IF r_enp.salary >= v_avg_sal THEN
UPDATE enpl oyees
SET sal _|inmt_indicate = 'YES
WHERE CURRENT OF enp_sal cur;
ELSE
UPDATE enpl oyees
SET sal |imt_indicate = 'NO
WHERE enpl oyee_id = r_enp. enpl oyee_i d;
END | F;
END LOOP;
EXCEPTI ON
VWHEN e_resour ce_busy THEN
ROLLBACK;

RAI SE_APPLI CATI ON_ERROR (- 20001,
"Record is busy, try later.");

END check_avg_sal ;
/

c. [Executethe procedure, and then test the results.
EXECUTE check_avg_sal
Query the EMPLOYEES table to view your modifications, and then commit the changes.
SELECT e.job_id, j.nin_salary, e.salary, j.max_salary
FROM enpl oyees e, jobs j

VWHERE e.job_id = j.job_id
AND enpl oyee_id = 106;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions -7

Part A: Additional Practice 5 Solutions
5. Create a program to retrieve the number of years of service for a specific employee.

a Create astored function called GET_SERVI CE_YRS to retrieve the total number of years of service

for a specific employee.
The function should accept the employee ID as a parameter and return the number of years of
service. Add error handling to account for aninvalid employee ID.
CREATE OR REPLACE FUNCTI ON get service_yrs
(p_enpid IN enployees. enpl oyee i d%'YPE)
RETURN nunber
IS
CURSOR enp_yrs_cur 1S
SELECT (end_date - start_date)/ 365 service
FROM job_history
WHERE enpl oyee_id = p_enpid;
v_srvcyrs NUMBER(2) := O;
v_yrs NUMBER(2) := 0O;
BEG N
FOR r_yrs IN enp_yrs_cur LOOP
EXIT WHEN enp_yrs_cur ¥NOTFOUND;

V_SIvCcyrs := V_Srvcyrs + r_yrs.service,;
END LOOP,
SELECT (SYSDATE - hire_date)

INTO v_yrs

FROM enpl oyees
WHERE enpl oyee id = p_enpid;

V_SIVCYrs := V_SIrvcyrs + v_yrs;
RETURN v_srvcyrs;
EXCEPTI ON

VWHEN NO_DATA FOUND THEN

RAI SE_APPLI CATI ON_ERROR(- 20348, 'There is no enployee with
the specified I1D);

END get service_yrs;
/
b. Invoke the function. Y ou can use the following data:
EXECUTE DBMs_QUTPUT. PUT_LI NE(get _service_yrs(999))
EEGIN DEMS COUTFPUT.PUT _LINE(get service wrs(990%); END;
*

ERFOE at line 1:

OFRA-20348: There is no employee with the specified ID
ORA-06512: at "SH?GET _BERVICE_¥VERE", line 24
OFA-06512: at line 1

EXECUTE DBMS_OUTPUT. PUT_LI NE (' Approxi mately

get _service_yrs(106) || ' years')

Spprovmately . 3 years
PLAAOL procedure successfully completed.

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 8

Part A: Additional Practice 5 Solutions (continued)

C. QuerytheJOB_HI STORY and EMPLOYEES tables for the specified employee to verify that the
modifications are accurate.
SELECT enpl oyee_id, job_id, (end date-start _date)/ 365 duration
FROM job_history;

| EMPLOYEE_ID | JOB_ID | DURATION

| 102 |IT_PROG | 552876712
| 101 |AC_ACCOUNT | 410136936
| 101 |AC_MGR | 3.38082192
| 201 |MK_REP | 3.83835616
| 114 |ST_CLERK | 1.77260274
! 122 |ST_CLERK | 997260274
| 200 |AD_ASST | 575342466
| 176 |SA_REP | J7260274
| 176 |SA_MAN | 387260274
| 200 |AC_ACCOUNT | 4 50410959
| 106 |IT_PROG | 324656171

11 rows selected.

SELECT job_id, (SYSDATE-hire_date)/365 duration
FROM enpl oyees
WHERE enpl oyee id = 106;

| JOB_ID | DURATION
|SY_ANAL | 000092718

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions -9

Part A: Additional Practice 6 Solutions

6.

In this practice, create a program to retrieve the number of different jobs that an employee
worked during his or her service.

a. Create astored function called GET_JOB_COUNT to retrieve the total number of different jobs on

which employee worked.

The function should accept one parameter to hold the employee ID. The function will return the
number of different jobs that employee worked until now. This al so includes the present job. Add
exception handling to account for an invalid employee ID.

Hint: Verify distinct job IDsfrom the Job_hi st or y table. Verify whether the current job ID is

one of the job 1Ds on which the employee worked.
CREATE OR REPLACE FUNCTI ON get job_count
(p_enpid IN enployees. enpl oyee_i d%'YPE)
RETURN NUMBER
IS
v_currjob enpl oyees. j ob_i d%'YPE;
v_numnj obs NUMBER : = O;
n NUMBER;
BEG N
SELECT COUNT(DI STI NCT j ob_i d)
| NTO v_nunj obs
FROM j ob_hi story
WHERE enpl oyee_id = p_enpid,;
SELECT COUNT(j ob_i d)
I NTO n
FROM enpl oyees
WHERE enpl oyee_id = p_enpid
AND job_id IN (SELECT DI STINCT job_id
FROM j ob_hi story
WHERE enpl oyee id = p_enpid);

IF (n = 0) THEN -- The current job is not one of the previous
j obs
v_numjobs := v_nunjobs + 1;
END | F;
RETURN v_nunj obs;
EXCEPTI ON

VHEN NO_DATA FQOUND THEN
RAI SE_APPLI CATI ON_ERROR(- 20348, ' Thi s enpl oyee does not
exist!');
END get j ob_count;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 10

Part A: Additional Practice 6 and 7 Solutions

b.

a

Invoke the function. Y ou can use the following data:

EXECUTE DBMS_OUTPUT. PUT_LI NE(' Enpl oyee worked on ' ||
get _job count(176) || ' different jobs.')

Employee worked on 2 different jobs.
PLAAOL procedure successfully completed.

Create a package specification and body called EMP_JOB_PKGthat contains your ADD_JOBS,
ADD JOB_HI ST, and UPD_SAL procedures, aswell asyour GET_SERVI CE_ YRS function.

Make all the constructs public. Consider whether you still need the stand-alone procedures and
functions you just packaged.

CREATE OR REPLACE PACKAGE enp_j ob_pkg
1S

PROCEDURE add_j obs
(p_jobid I N jobs.job_ i dWYPE,
p_jobtitle INjobs.job title%YPE,
p_mnsal IN jobs.mn_sal ary%dYPE
)
PROCEDURE add_j ob_hi st
(p_enpid I N enpl oyees. enpl oyee_i d%I'YPE,
p_jobid IN jobs.job_ i dWYPE);
PROCEDURE upd_sal
(p_jobid I N jobs.job_id% ype,
p_mnsal |INjobs.nmn_sal ary% ype,
p_naxsal | N jobs. max_sal ary% ype);
FUNCTI ON get _service_yrs
(p_empid IN enployees. enpl oyee_ i d%I'YPE)
RETURN NUMBER,

END enp_j ob_pkg;

/

CREATE OR REPLACE PACKAGE BODY enp_j ob_pkg
IS

PROCEDURE add_j obs
(p_jobid I N jobs.job_i dWYPE,
p_jobtitle IN jobs.job_title%YPE,

p_ninsal INjobs.mn_sal ary%YPE
)
IS
v_maxsal jobs. max_sal ar y%d YPE;
BEG N
v_maxsal := 2 * p_mnsal;

| NSERT INTO jobs (job_id, job title, nin_salary, max_salary)
VALUES (p_jobid, p_jobtitle, p_mnsal, v_naxsal);
DBMS_QUTPUT. PUT_LI NE (' Added the following rowinto the JOBS
table ...");
DBMS_CQUTPUT. PUT_LINE (p_jobid||" "||p_jobtitle]]|"
"||p_mnsal||]" '||v_maxsal);
END add_j obs;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 11

Part A: Additional Practice 7 Solutions (continued)
PROCEDURE add_j ob_hi st
(p_enpid I N enpl oyees. enpl oyee_i d% YPE,
p_jobid INjobs.job_idWYPE) IS
BEG N
I NSERT | NTO j ob_hi story
SELECT enployee_id, hire_date, SYSDATE, job_id, departnent _id
FROM enpl oyees WHERE enpl oyee id = p_enpid;
UPDATE enpl oyees
SET hire_date = SYSDATE, job_id = p_jobid,
salary = (SELECT m n_sal ary+500 FROM j obs
VWHERE job_id = p_jobid)
WHERE enpl oyee id = p_enpid;
DBMS_CQUTPUT. PUT_LI NE (' Added enpl oyee ' ||p_enpid|| ' details
to the JOB H STORY table');
DBVS_OUTPUT. PUT_LI NE(' Updated current job of enployee ' ||
p_empid [| " to ' || p_jobid);
EXCEPTI ON
VHEN NO_DATA FOUND THEN
RAI SE_APPLI CATI ON_ERROR (-20001, 'Enpl oyee does not exist!');
END add_j ob_hi st ;
PROCEDURE upd_sal
(p_jobid I N jobs.job_i d% ype,

p_mnsal |INjobs.mn_sal ary% ype,

p_maxsal I N jobs. max_sal ary% ype) IS

v_dumry VARCHAR2(1) ;

e _resource_busy EXCEPTI ON;

sal error EXCEPTI ON;

PRAGVA EXCEPTION INIT (e_resource_busy , -54);
BEG N

| F (p_maxsal < p_minsal) THEN
DBVS_OUTPUT. PUT_LI NE(' ERROR. . MAX SAL SHOULD BE > M N SAL');
RAI SE sal _error;

END | F;
SELECT '' INTO v_dummy FROM jobs WHERE job_id = p_jobid
FOR UPDATE OF min_sal ary NOMIT;
UPDATE j obs
SET mn_salary = p_mnsal, max_salary = p_naxsal
WHERE job id = p_jobid;
EXCEPTI ON

VWHEN e_resour ce_busy THEN
RAI SE_APPLI CATI ON_ERROR (-20001, 'Job information is currently
| ocked, try later.");
WHEN NO_DATA FOUND THEN
RAI SE_APPLI CATI ON_ERROR (-20001, 'This job ID doesn't exist');
WHEN sal error THEN
RAI SE_APPLI CATI ON_ERROR(- 20001, ' Data error.. Max sal ary
shoul d be nore than nin salary');
END upd_sal ;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 12

Part A: Additional Practice 7 Solutions (continued)
FUNCTI ON get _service_yrs
(p_empid IN enployees. enpl oyee_i d%I'YPE)
RETURN nunber
IS
CURSOR enp_yrs_cur IS
SELECT (end _date - start_date)/ 365 service
FROM job _history
WHERE enpl oyee_id = p_enpid;
v_srvcyrs NUMBER(2) := O;
v_yrs NUMBER(2) := 0;
BEG N
FOR r_yrs IN enmp_yrs_cur LOOP
EXIT WHEN enp_yrs_cur ¥%NOTFOUND;

V_SrvCyrs := V_Srvcyrs + r_yrs.service;
END LOOP;
SELECT (SYSDATE - hire_date)

INTO v_yrs

FROM enpl oyees
WHERE enpl oyee_id = p_enpid;

V_SIVCYyrs := V_Srvcyrs + v_yrs;
RETURN v_srvcyrs;
EXCEPTI ON

VHEN NO_DATA FOUND THEN
RAI SE_APPLI CATI ON_ERROR(- 20348, 'There is no enployee with the
specified 1D);
END get service_yrs;

END enp_j ob_pkg;
/

b. Disableal thetriggers before invoking the procedure and enable them after invoking the procedure,
as suggested in question 2b.

Invoke your ADD _JOBS procedure to create a new job with ID PR_MAN, job title Publ i ¢
Rel ati ons Manager , and salary of 6,250.

Invoke your ADD_JOB_HI ST procedure to modify the job of employee with employee ID 110 to
job ID PR_MAN.

Hint: All of the above calls to the functions should be successful.
EXECUTE enp_j ob_pkg. add_jobs (' PR_ MAN , 'Public Relations
Manager', 6250)
EXECUTE enp_j ob_pkg. add_j ob_hi st (110, ' PR_MAN)
c. Querythe JOBS, JOB_HI STORY, and EMPLOYEES tablesto verify the results.
SELECT * FROM jobs WHERE job_id = ' PR_MAN ;
SELECT * FROM job_history WHERE enpl oyee id = 110;
SELECT job_id, salary FROM enpl oyees WHERE enpl oyee id = 110;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 13

Part A: Additional Practice 8 Solutions

8. In this practice, use an Oracle-supplied package to schedule your GET_JOB_COUNT
function to run semiannually.

a Create an anonymous block to call the DBMS_J OB Oracle-supplied package.

Invoke the package function DBM5_JOB. SUBM T and pass the following four parameters: a
variable to hold the job number, the name of the subprogram you want to submit, SYSDATE as the
date when the job will run, and an interval of ADDMONTHS(SYSDATE , 6) for semiannual
submission.

DECLARE
v_job USER _JOBS. j ob%YPE;
BEG N

DBMS_JOB.SUBM T (v_job, 'BEG N DBMS_OUTPUT. PUT_LI NE
(get _job _count(110)); END; ',

SYSDATE,
' ADD_NMONTHS(SYSDATE, 6)');
DBMS_JOB. RUN(V_j ob);
DBVS_OUTPUT. PUT_LINE(' JOB: '|| v_job |]
' COWPLETED AT - ' || SYSDATE);
END;
/

Note: To force thejob to run immediately, call DBMS_JOB. RUN(your _j ob_nunber) after calling
DBVS_JOB. SUBM T. This executes the job waiting in the queue.

Execute the anonymous bl ock.

b. Check your results by querying the EMPLOYEES and JOB_HI STORY tables and querying the
USER_JOBS dictionary view to see the status of your job submission.

SELECT job, what, schenma_user, |ast_date, next_date, interval
FROM USER JOBS;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 14

Part A: Additional Practice 9 Solutions

9.

In this practice, create atrigger to ensure that the job 1D of any new employee being hired to
department 80 (the Sales department) is a sales manager or representative.

Disable al the previously created triggers as discussed in question 2b.
ALTER TABLE enpl oyees DI SABLE ALL TRI GGERS;
ALTER TABLE jobs DI SABLE ALL TRI GGERS;

ALTER TABLE job_history DI SABLE ALL TRI GGERS;
Create atrigger called CHK_SALES JOB.

Fire the trigger before every row that is changed after insertions and updates to the JOB_| D column
in the EMPLOYEES table. Check that the new employee hasajob ID of SA MAN or SA_REP inthe
EMPLOYEES table. Add exception handling and provide an appropriate message so that the update
failsif the new job ID is not that of a sales manager or representative.

CREATE OR REPLACE TRI GGER chk_sal es_j ob
BEFORE | NSERT OR UPDATE OF job_id ON enpl oyees
FOR EACH ROW
DECLARE
e_invalid_sales_job EXCEPTI ON;
BEG N
| F :new. department _id = 80 THEN
IF (:new.job_id NOT IN("SA MAN , 'SA REP')) THEN
RAI SE e_invalid_sal es_job;
END | F;
END | F;
EXCEPTI ON
WHEN e_inval i d_sal es_j ob THEN

RAI SE_APPLI CATI ON_ERRCR (-20444, 'This enpl oyee in departnent
80 should be a Sal es Manager or Sales Rep!');

END chk_sal es_j ob;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 15

Part A: Additional Practice 9 Solutions (continued)

c. Testthetrigger. You can use the following data:
UPDATE enpl oyees
SET job_id = 'AD VP
WHERE enpl oyee_id = 106;
UPDATE enpl oyees
SET job_id = ' AD VP
WHERE enpl oyee_id = 179;
UPDATE enpl oyees
SET job_id = 'SA MAN
WHERE enpl oyee id = 179;
Hint: The middle statement should produce the error message specified in your trigger.

1 roner updated.
UPDATE emplosees
*

ERF.OR. at line 1:

OF£-20444: This eraplosree in departiment 20 should be a Sales Ianager or Sales Rep!
OBA-06512: at "SHR.CHE_SALES JOB®, line 11

OF&-04028: ervor during execution of trigger 'SHO.CHE. SATES JOR

1 rowr updated.

d. Query the EMPLOYEES table to view the changes. Commit the changes.
SELECT job_id, departnent_id, salary
FROM enpl oyees
WHERE enpl oyee_id = 179;

e. Enableall the triggers previously that you disabled, as discussed in question 2b.
ALTER TABLE enpl oyees ENABLE ALL TRI GGERS;
ALTER TABLE j obs ENABLE ALL TRI GCERS;
ALTER TABLE j ob_hi story ENABLE ALL TRI GCGERS;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 16

Part A: Additional Practice 10 Solutions

10. Inthispractice, create atrigger to ensure that the minimum and maximum salaries of ajob are
never modified such that the salary of an existing employee with that job ID is out of the new
range specified for the job.

a Createatrigger called CHECK _SAL_RANGE.
Fire the trigger before every row that is changed when datais updated inthe M N_SALARY and
MAX_SALARY columnsin the JOBS table. For any minimum or maximum salary value that is
changed, check that the salary of any existing employee with that job ID in the EMPLOYEES table
falls within the new range of salaries specified for thisjob ID. Include exception handling to cover a
salary range change that affects the record of any existing empl oyee.
CREATE OR REPLACE TRI GGER check_sal _range
BEFORE UPDATE COF nmin_salary, max_salary ON jobs
FOR EACH ROW
DECLARE
v_m nsal enpl oyees. sal ar y%I'YPE;
v_maxsal enpl oyees. sal ar y%I'YPE;
e _invalid_salrange EXCEPTI ON;
BEG N
SELECT M N(sal ary), MAX(sal ary)
I NTO v_minsal, v_maxsal
FROM enpl oyees
VWHERE job_id = : NEWjob_id;
IF (v_mnsal < :NEWmn_sal ary) OR(v_nmaxsal > :NEW nmax_sal ary)
THEN RAISE e invalid_sal range;
END | F;
EXCEPTI ON
WHEN e_i nval i d_sal range THEN

RAI SE_APPLI CATI ON_ERROR(- 20550, ' There are enpl oyees whose
salary is out of the specified range. Can not update with
the specified salary range.');

END check_sal range;

/

b. Testthetrigger. You can use the following data:
SELECT * FROM jobs WHERE job_id = 'SY_ANAL';
SELECT enployee_id, job_id, salary
FROM empl oyees
VWHERE job_id = 'SY_ANAL';
UPDATE | obs

SET nin_salary = 5000, nmax_salary = 7000
VWHERE job_id = 'SY_ANAL';

UPDATE | obs
SET m n_salary = 7000, max_salary = 18000

WHERE job_id = ' SY_ANAL' ;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 17

Part B: Additional Practice 1 Solutions

1 Run the script bui | dvi d1. sql to create al of the required tables and sequences needed for
thisexercise.
Run the script bui | dvi d2. sqgl to populate al the tables created through by the script
bui | dvi d1. sql

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 18

Part B: Additional Practice 2 Solutions

2.

a

Create a package named VI DEOwith the following procedures and functions:

NEW MEMBER: A public procedure that adds a new member to the MVEMBER table. For the member
ID number, use the sequence MEMBER_| D_SEQ; for the join date, use SYSDATE. Pass al other
valuesto beinserted into anew row as parameters.

NEW RENTAL : An overloaded public function to record a new rental. Pass the title ID number for
the video that a customer wants to rent and either the customer’ s last name or his member ID number
into the function. The function should return the due date for the video. Due dates are three days
from the date the video isrented. If the status for a movie requested is listed as AVAI LABLE in the
Tl TLE_COPY table for one copy of thistitle, then update this TI TLE_COPY table and set the status
to RENTED. If there is no copy available, the function must return NULL. Then, insert a new record
into the RENTAL table identifying the booked date as today's date, the copy 1D humber, the member
ID number, thetitle ID number and the expected return date. Be aware of multiple customers with
the same last name. In this case, have the function return NULL, and display alist of the customers
names that match and their ID numbers.

RETURN_MOVI E: A public procedure that updates the status of a video (available, rented, or
damaged) and sets the return date. Pass the title ID, the copy 1D and the status to this procedure.
Check whether there are reservations for that title, and display a message if it isreserved. Update the
RENTAL table and set the actual return date to today’ s date. Update the statusin the TI TLE COPY
table based on the status parameter passed into the procedure.

RESERVE_MVI E: A private procedure that executes only if all of the video copies requested in the
NEW RENTAL procedure have a status of RENTED. Pass the member 1D number and thetitle ID
number to this procedure. Insert a new record into the RESERVATI ON table and record the
reservation date, member ID number, and title ID number. Print out a message indicating that a
movie isreserved and its expected date of return.

EXCEPTI ON_HANDLER: A private procedure that is called from the exception handler of the public
programs. Pass the SQL CODE number to this procedure, and the name of the program (as atext
string) where the error occurred. Use RAI SE_APPLI CATI ON_ERROR to raise a customized error.
Start with aunique key violation (-1) and foreign key violation

(-2292). Allow the exception handler to raise a generic error for any other errors.

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 19

Part B: Additional Practice 2 Solutions

CREATE OR REPLACE PACKAGE vi deo

IS
PROCEDURE new_memnber
(p_Il nane I N menber. | ast _nanme% YPE,
p_f name IN menber.first_nanme%YPE DEFAULT NULL,
p_address I N menber . addr ess%l YPE DEFAULT NULL,
p_city I N nenber. cit y%dYPE DEFAULT NULL,
p_phone I N menmber . phone%d YPE DEFAULT NULL) ;

FUNCTI ON new _r ent al
(p_rmenber _id IN rental . menber i d%'YPE,
p_title_id INrental .title_i dWYPE)
RETURN DATE;

FUNCTI ON new _r ent al
(p_rmenber _nane | N nmenber. | ast _nane%l YPE,

p_title_id INrental .title_i dWYPE)
RETURN DATE;
PROCEDURE r et urn_novi e
(p_title_id INrental.title_ i d%'YPE,
p_copy_id IN rental . copy_i d%W'YPE,
p_status INtitle_copy.status%YPE);
END vi deo;

/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 20

Part B: Additional Practice 2 Solutions (continued)

CREATE OR REPLACE PACKAGE BODY vi deo
IS
/* PRI VATE PROGRAMS */
PROCEDURE excepti on_handl er
(p_code I N NUMBER,
p_cont ext IN VARCHAR?2)
IS
BEG N
IF p_code = -1 THEN
RAI SE_APPLI CATI ON_ERROR(- 20001, ' The nunber is
assigned to this nmenber is already in use, try again.');
ELSIF p_code = -2291 THEN
RAI SE_APPLI CATI ON_ERROR(- 20002, p_context || ' has
attenpted to use a foreign key value that is invalid);
ELSE
RAI SE_APPLI CATI ON_ERROR(- 20999, 'Unhandled error in "' ||
p_context || '. Please contact your application
adm nistrator with the follow ng information: '
|| CHR(13) || SQLERRM;
END | F;
END exception_handl er;

PROCEDURE reserve_novi e
(p_rmenber _id IN reservation. menber i d9YPE,
p_title_id IN reservation.title_i dWYPE)
IS
CURSOR rented _cur IS
SELECT exp_ret _date
FROM r ent al
VWHERE title_id = p_title_id
AND act _ret_date IS NULL;
BEG N
I NSERT | NTO reservation (res_date, nenber _id, title_ id)
VALUES(SYSDATE, p_nenber_id, p_title_id);
COW T,
FOR rented rec IN rented cur LOOP
DBVS_OUTPUT. PUT_LI NE(' Movi e reserved. Expected back on: '
|| rented_rec.exp _ret _date);
EXIT WHEN rent ed_cur % ound,;
END LOOP;
EXCEPTI ON
WHEN OTHERS THEN
excepti on_handl er (SQLCODE, ' RESERVE MWIE');
END reserve_novi e;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 21

Part B: Additional Practice 2 Solutions (continued)

/* PUBLI C PROGRAMS */

PROCEDURE r et urn_novi e

(p_title_id INrental .title_i dWYPE,
p_copy_id IN rental . copy_i d%'YPE,
p_status INtitle copy.status% YPE)

IS

v_dumrmy VARCHAR2(1);
CURSCR res_cur IS
SELECT *
FROM r eservati on
VWHERE title_id = p_title_id;
BEG N
SELECT '
| NTO v_dunmy
FROM title
VWHERE title_id = p_title_id;
UPDATE r ent al
SET act_ret _date = SYSDATE
WHERE title_id = p_title_id
AND copy_id = p_copy_id
AND act _ret_date IS NULL;
UPDATE titl e_copy
SET status = UPPER(p_stat us)
WHERE title_id = p_title_id
AND copy_id = p_copy_id;
FOR res rec IN res_cur LOOP
I F res_cur %0OUND THEN
DBVS_OUTPUT. PUT_LINE(' Put this nmovie on hold -- '||
"reserved by nmenber #' || res_rec.nenber_id);
END i f;
END LOOP;
EXCEPTI ON
WHEN OTHERS THEN
excepti on_handl er (SQLCODE, ' RETURN _MOWIE') ;
END r et urn_novi e;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 22

Part B: Additional Practice 2 Solutions (continued)

/* PUBLI C PROGRAMS */

FUNCTI ON new _r ent al
(p_rmenber _id IN rental.nenber i d%YPE,
p_title_id IN rental.title_i d%YPE)
RETURN DATE
IS
CURSOR copy_cur IS
SELECT *
FROM titl e_copy
VWHERE title_id = p_title_id
FOR UPDATE;
v_flag BOOLEAN : = FALSE;
BEG N
FOR copy_rec I N copy_cur LOCP
I F copy_rec.status = ' AVAI LABLE' THEN
UPDATE titl e _copy
SET status = ' RENTED
VWHERE CURRENT OF copy_cur;
I NSERT | NTO rental (book_date, copy_id, nenber_id,
title_id, exp_ret_date)
VALUES(SYSDATE, copy_rec.copy_id, p_nenber _id,
ptitle_ id, SYSDATE + 3);
v_flag : = TRUE;
EXI T,
END | F;
END LOOP;
COW T;
IF v_flag THEN
RETURN (SYSDATE + 3);
ELSE
reserve_novi e(p_nenber _id, p_title_id);
RETURN NULL;
END | F;
EXCEPTI ON
WHEN OTHERS THEN
excepti on_handl er (SQLCODE, ' NEW RENTAL');
END new rental ;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 23

Part B: Additional Practice 2 Solutions (continued)

/* PUBLI C PROGRAMS */
FUNCTI ON new r ent al

(p_rmenber _nane IN nenber. | ast nanme% YPE,
p title_id IN rental.title_ i d%YPE)
RETURN DATE
IS
CURSOR copy_cur |'S
SELECT *

FROM titl e _copy
VWHERE title_id = p_title_id
FOR UPDATE;
v_flag BOOLEAN := FALSE;
p_nenber_id menber. nmenber i dWYPE;
CURSOR nenber _cur | S
SELECT nenber _id, last_nane, first_nane
FROM nenber
WHERE LOWER(| ast _nane) = LOWER(p_nenber _nane)
ORDER BY | ast_nane, first_nane;
BEG N
SELECT nenber _id
I NTO p_nenber _id
FROM nenber
WHERE | ower (1 ast _nane) = | ower (p_nenber_nane);
FOR copy_rec IN copy_cur LOCP
I F copy_rec.status = ' AVAI LABLE' THEN
UPDATE titl e_copy
SET status = ' RENTED
VWHERE CURRENT OF copy_cur;
I NSERT | NTO rental (book date, copy_id, nenber _id,
title_id, exp_ret_date)
VALUES (SYSDATE, copy_rec.copy_id, p_nenber_id,
p_title_id, SYSDATE + 3);
v_flag : = TRUE;
EXIT,;
END | F;
END LOOP;
COW T,
IF v_flag THEN
RETURN(SYSDATE + 3);
ELSE
reserve_novi e(p_nenber _id, p_title_id);
RETURN NULL;
END | F;

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 24

Part B: Additional Practice 2 Solutions (continued)

/* NEW RENTAL CONTI NUED FROM PRI OR PACE */
EXCEPTI ON
WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT. PUT_LI NE(
"Warni ng! More than one nenber by this name.');
FOR nenber _rec | N nenber_cur LOOP
DBVS_QUTPUT. PUT_LI NE(nmenber _rec. nenber _id || CHR(9) ||
nmenber _rec.last_nanme || ', ' || nenber_rec.first_nane) ;
END LOOP;
RETURN NULL;
WHEN OTHERS THEN
excepti on_handl er (SQLCODE, ' NEW RENTAL');
END new rental ;

PRCCEDURE new_menber

(p_I nane I N menber. | ast _name% YPE,
p_f name IN menber.first_nanme%YPE DEFAULT NULL,
p_address I N nenber . addr ess%l'YPE DEFAULT NULL,
p_city I N nmenber. cit y%d'YPE DEFAULT NULL,
p_phone I N menber . phone%d YPE DEFAULT NULL)
IS
BEG N

I NSERT | NTO nenber (nmenber _id, |ast_name, first_nane,
address, city, phone, join_date)
VALUES(nenber i d_seq. NEXTVAL, p_Il nane, p_fnane,
p_address, p_city, p_phone, SYSDATE);
COW T;
EXCEPTI ON
VWHEN OTHERS THEN
excepti on_handl er (SQLCODE, ' NEW MEMBER) ;
END new_nenber ;
END vi deo;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 25

Part B: Additional Practice 3 Solutions

3. The business hours for the video store are 8:00 am. to 10:00 p.m., Sunday through Friday, and

8:00 am. to 12:00 am. on Saturday. To ensure that the tables can only be modified
during these hours, create a stored procedure that is called by triggers on the tables.

a. Create astored procedure called TI ME_CHECK that checks the current time against business hours.
If the current timeis not within business hours, use the RAI SE_APPLI CATI ON_ERROR procedure
to give an appropriate message.

b. Createatrigger on each of the five tables. Fire the trigger before datais inserted, updated, and
deleted from the tables. Call your Tl ME_CHECK procedure from each of these triggers.

c. Testyour trigger.

Note: In order for your trigger to fail, you need to change the time to be outside the range of your
current time in class. For example, while testing, you may want valid video hoursin your trigger to
be from 6:00 p.m. to 8:00 am.

CREATE OR REPLACE PROCEDURE ti me_check

1S
BEG N
| F ((TO_CHAR(SYSDATE, ' D') BETWEEN 1 AND 6)
AND
(TO_DATE(TO_CHAR(SYSDATE, ' hh24:nmi'), 'hh24:nmi")
NOT BETWEEN
TO DATE(' 08:00', 'hh24:mi') AND TO DATE(' 22:00', 'hh24:ni')))
R
((TO_CHAR(SYSDATE, 'D) = 7)
AND
(TO_DATE(TO CHAR(SYSDATE, 'hh24:ni'), 'hh24:ni")
NOT BETWEEN
TO DATE(' 08:00', 'hh24:mi') AND TO DATE(' 24:00', 'hh24:ni')))
THEN

RAI SE_APPLI CATI ON_ERROR(- 20999,
'Data changes restricted to office hours.');
END | F;
END ti me_check;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 26

Part B: Additional Practice 3 Solutions (continued)

CREATE OR REPLACE TRI GGER nenber trig
BEFORE | NSERT OR UPDATE OR DELETE ON nenber
BEG N
ti me_check;
END;
/
CREATE OR REPLACE TRIGGER rental _trig
BEFORE | NSERT OR UPDATE OR DELETE ON rental
BEG N
ti me_check;
END;
/
CREATE OR REPLACE TRIGGER title_copy_trig
BEFORE | NSERT OR UPDATE OR DELETE ON titl e_copy
BEG N
ti me_check;
END;
/
CREATE OR REPLACE TRIGCER title_trig
BEFORE | NSERT OR UPDATE OR DELETE ON title
BEG N
ti me_check;
END;
/
CREATE OR REPLACE TRI GGER reservation_trig
BEFORE | NSERT OR UPDATE OR DELETE ON reservation
BEG N
ti me_check;
END;
/

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 27

Oracle9i: Develop PL/SQL Program Units - Additional Practice Solutions - 28

Additional Practices:
Table Descriptions
and Data

Part A

Thetables and data used in part A are the same as those in the appendix B, “Table Descriptions and
Data.”

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 2

Part B: Tables Used

SELECT * FROM t ab;

| TNAME | TABTYPE | CLUSTERID
MEMBER TABLE |

IREMTAL TABLE |

[RESERWATION TABLE

TITLE TABLE

TITLE_COPY TABLE |

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 3

Part B:
DESCRI BE nemnber

MEMBER Table

| Name | Null? | Type

IMEMEER_ID INOT MULL INUMBER(10)

ILAST MAME IMOT MULL YARCHARZ(2E)

FIRST_MAME ! WARCHARZ(25)

ADDRESS | WARCHARZ(100)

oy | WARCHARZ(30)

IPHONE | IYARCHARZ(25)

WJOIN_DATE IMOT MULL \DATE

SELECT * FROM nmenber;

IMEMBER_ID | LAST_MAME |FIRST_NAME | ADDRESS | CTY | PHOME |JOIN_DATE
| 101 (elasguez |Carmen 283 King Street \Seattle 587-99-6666 |03-MAR-30
| 102 |Ngao \LaDoris |5 Madrany Bratislava |586-355-8882 |08-MAR-G0
| 103 [Magayama |Midori |8 Wia Centrale \Sa0 Panlo |254-852-5764 |17-JUN-31
| 104 |Quick-To-See |Mark 6821 King Way LLagas 63-550-777 |07-APR-00
| 105 [Ropeburn |Audry |86 Chu Street Hong Kong |41-553-87 | 04-MAR-30
| 106 |[Urguhart Mally 3035 Laurier Blvd. (Quebec |418-542-0388 |18-JAN-81
| 107 |Menchu \Roberta Boulevard de Waterlon 41 |Brussels |322-504-2228 |14-MAY-90
| 108 |Biri |Ben 388 High St (Columbus |614-455-0863 |07-APR-00
| 109 [Catchpole |Antoinette |28 Alfred St Brishane |A16-398-1411 |09-FEB-92
| 110 |Haas \James \Chestnut Street Boston |G17-123-4567 |0B-MAR-01
| 111 |Biri |Allan Hiawatha Drive IMewsYork |516-123-4567 |06-MAR-01
| 112 pelasquez |Carmen 283 King Street Seattle 587-00-6B66 | 03-MAR-G0
| 113 |Ngao \LaDotis 5 Modrany Bratislava |596-355-8882 |08-MAR-80
| 114 [Nagayama |Midori 68 via Centrale \Sao Paolo |254-852-5764 |17-JUN-31
IMEMBER_ID |LAST_NAME |FIRST_NAME | ADDRESS | CTY | PHOME |JOIN_DATE
| 115 |Quick-To-See |Mark 6821 King Way LLagas 63-650-777 |07-APR-00
| 116 [Ropeburn |Audry |86 Chu Street Hong Kong |41-553-87 | 04-MAR-80
| 117 |Urguhart Mally 3034 Laurier Blvd. \Quebec |418-542-3888 |18-JAN-81
| 118 [Menchu \Roberta Boulevard de Waterloo 41 |Brussels |322-504-2228 |14-MAY-90
| 119 |Biri |Ben 388 High St \Columbus |614-455-9863 |07-APR-20
| 120 [Catchpole |Antoinette |28 Alfred 5t Brishane |G16-308-1411 |03-FEB-92
| 121 |Haas \James (Chestnut Street Boston |G17-123-4567 |06-MAR-01
| 122 |Biri |&llan Hiawatha Drive IMewsYork |516-123-4567 |0B-MAR-D1

22 rows selected.

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 4

Part B: RENTAL Table

DESCRI BE r ent al

| Hame | Null? | Type
[BOOK_DATE MOT MULL \DATE

(COPY_ID IMOT MULL MUMBER(10)
IMEMBER_ID IMOT MULL NUMBER(10)
TITLE_ID INOT MULL INUMBER(10)
ACT_RET_DATE | \DATE
[EXP_RET_DATE | \DATE

SELECT * FROM rent al ;

| BOOK_DATE |COPY_ID | MEMBER ID |TITLE_ID | ACT RET D | EXP_RET D
05-MAR-O1 | 2 | 101 | g3 | 07-MAR-01
04-MAR-01 | 3| 102 | 95 | DB-MAR-01
03-MAR-01 | 1| 101 | 98 | 05-MAR-01
02-MAR-O1 | 1| 106 | 97 04-MAR-O1 |D4-MAR-O1
03-MAR-01 | 1| 101 | 92 04-MAR-O1 [D5-MAR-O1
DE-MAR-01 | 2] 110 | 98 | 09-MAR-01
05-rMAR-01 | 2 | 101 | 93 | 07-MAR-01
04-MAR-01 | 3| 102 | 95 | DE-MAR-01
03-rMAR-01 | 1| 101 | 98 | 05-MAR-01
02-MAR-01 | 1| 106 | 97 04-MAR-O1 |D4-MAR-O1
03-MAR-01 | 1| 101 | 92 04-MAR-O1 [05-MAR-O1

11 rows selected.

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 5

Part B: RESERVATI ON Table

DESCRI BE r eservati on

| Name | Mull? | Type

IRES_DATE IMOT NULL \DATE

IMEMBER_ID IMOT MULL INUMBER(10)

TITLE_ID IMOT MULL NUMBER(10]

SELECT * FROM reservati on;

| RES_DATE | MEMBER_ID | TITLE_ID
05-MAR-D1 | 101 | 93
04-MAR-01 | 105 | 102
0B-MAR-01 | 110 | 95
05-MAR-01 | 101 | 93
04-MAR-01 | 106 | 102
0B-MAR-01 | 110 | o5

B rows selected.

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 6

Part B: TI TLE Table
DESCRIBE title
| Mame | Null? | Type
TITLE_ID INOT MULL INUMBER(10)
TITLE IMOT MULL YARCHARZ(E0)
|DESCHIF‘TION |NCIT MULL |\=’AHCHARE[&DD]
IRATING | WARCHARZ(4)
\CATEGORY | ARCHARZ(20)
\RELEASE_DATE | \DATE
SELECT * FROMtitle;
TITLE_ID | TITLE | DESCRIPTION IRATI |[CATEGORY |RELEASE_D
willie and All ofWillie's friends made a Christmas list for
92 e ﬁ:tnta, but Willie has vet to create his own wish |G CHILD 05-0CT-945
Another installment of science fiction history.
93 [Alien Again Can the heroine save the planet from the alien |[R SCIFI 19-mAY-95
life form?
94 The Glab Ametear crashes near a small American town | o ooy 12-AG-85
and unleashes carnivorous goo in this classic.
55 |My Day OF Wi_th a little luck and a I_u:ut of ingenuity, a teenager PG |COMEDY |12-JUL-5
skips school for a day in Mew York,
96 IMiracles on lee A sbeyearold has doubts about Santa Claus. PG |DRAMA 172-SEP-95
But she discovers that miracles really do exist.
After discovering a cached of drugs, a young
9Y |Soda Gang couple find themselves pitted against a vicious [NE [ACTIORN 01-JUIM-9%5
gdang.
ag linterstellar Wars Futuristic interstellar action movie. Canthe PG |SCIF] 07-JUL-TT
rebels save the humans from the evil Empire?
willie and All of Willie's friends made a Christmas list for
99 EhsHa S THD ﬁ:tnta, but Willie has wet to create his own wish |G CHILD 058-0CT-945
Another installment of science fiction history.
100 |Alien Again Can the heroine save the planet from the alien |R SCIFI 19-mAY-95
life form?
101 |The Glob Ameteor crashes near a small American town |, o oo gy 17-ALG-G5
and unleashes carnivorous goo in this classic.
102 My Day OF Wi_th a little luck and a I_u:ut of ingenuity, a teenager PG |COMEDY |12-JUL-5
skips school for a day in Mew York,
103 |Miracles onlce |- SPevearold has doubts about Santa Claus. o Ippays |12.5EP-95
But she discovers that miracles really do exist.
After discovering a cached of drugs, ayoung
104 |Soda Gang couple find themselves pitted against a vicious [NE - [ACTION 01-JUIN-9%5
dang.
105 linterstellar Wars Futuristic interstellar action movie. Can the PG |SCIF] 07-JUL-TT
rehels save the humans from the evil Empire’?

14 rows selected.

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 7

Part B: TI TLE _COPY Table

DESCRIBE titl e_copy

| Hame | Hull? | Type
\COPY_ID IMOT MULL INUMBER{10)

TITLE_ID IMOT MULL INUMBER(10)

ISTATUS IMOT NULL WARCHAR2(15)

SELECT * FROM titl e_copy;

COPY_ID TITLE_ID | STATUS

92 |AvAILABLE

43 |AvAILABLE

33 |REMTED

a4 |AvalLABLE

95 |AvaILABLE

a5 |REMTED

05 |AvAlLABLE

97 |AvAILABLE

98 |RENTED

|
1|
1|
2 |
1|
1|
2 | 05 |[AvAILABLE
3 |
1|
1|
1|
2 |

98 |REMTED

11 rowes selected.

Oracle9i: Develop PL/SQL Program Units - Table Descriptions - 8

